Simultaneous effect of microwave sintering and TiO2 addition on sinterability, mechanical properties, and scratch resistance of zirconia toughened alumina ceramics

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Ceramics International Pub Date : 2024-09-25 DOI:10.1016/j.ceramint.2024.09.321
Chandra Obulesu Bapanapalle , Prabhat Kumar Prajapati , Kishor Kumar Sadhu , Nilrudra Mandal
{"title":"Simultaneous effect of microwave sintering and TiO2 addition on sinterability, mechanical properties, and scratch resistance of zirconia toughened alumina ceramics","authors":"Chandra Obulesu Bapanapalle ,&nbsp;Prabhat Kumar Prajapati ,&nbsp;Kishor Kumar Sadhu ,&nbsp;Nilrudra Mandal","doi":"10.1016/j.ceramint.2024.09.321","DOIUrl":null,"url":null,"abstract":"<div><div>This paper delves into the transformative impact of varying titanium dioxide (TiO<sub>2</sub>) content on the sinterability, physical, and mechanical properties, as well as scratch behavior, of zirconia-toughened alumina (ZTA) ceramic composites. By adjusting TiO<sub>2</sub> content from 0 wt% to 5 wt% and employing advanced microwave sintering at 1150 °C, the study aims to lower the sintering temperature of ZTA. Microwave sintering, known for its efficiency and rapid processing, enables significant enhancements in material properties at reduced temperatures. Notably, incorporating TiO<sub>2</sub> into ZTA yields remarkable improvements in physical and mechanical attributes, with the optimal TiO<sub>2</sub> content determined to be 3 wt%. At this concentration, the composite achieves exceptional properties: a relative density of ∼99 %, microhardness of ∼2002 HV, and an indentation fracture toughness of ∼6.13 MPa m<sup>0.5</sup>. These enhancements represent increases of over 120 % in hardness and 61 % in toughness compared to TiO<sub>2</sub>-free ZTA. Additionally, the highest scratch resistance is observed at 3 wt% TiO<sub>2</sub>, evidenced by a minimal scratch depth of ∼7.53 μm. However, exceeding the 3 wt% solubility limit results in the formation of secondary phases, such as tialite (Al<sub>2</sub>TiO<sub>5</sub>) and zirconium titanate (ZrTiO<sub>4</sub>), which degrade the composite's properties. This research underscores the potential of TiO<sub>2</sub> doping and microwave sintering to elevate the performance of ZTA ceramics, offering a pathway to superior materials for advanced applications.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49782-49791"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224043566","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper delves into the transformative impact of varying titanium dioxide (TiO2) content on the sinterability, physical, and mechanical properties, as well as scratch behavior, of zirconia-toughened alumina (ZTA) ceramic composites. By adjusting TiO2 content from 0 wt% to 5 wt% and employing advanced microwave sintering at 1150 °C, the study aims to lower the sintering temperature of ZTA. Microwave sintering, known for its efficiency and rapid processing, enables significant enhancements in material properties at reduced temperatures. Notably, incorporating TiO2 into ZTA yields remarkable improvements in physical and mechanical attributes, with the optimal TiO2 content determined to be 3 wt%. At this concentration, the composite achieves exceptional properties: a relative density of ∼99 %, microhardness of ∼2002 HV, and an indentation fracture toughness of ∼6.13 MPa m0.5. These enhancements represent increases of over 120 % in hardness and 61 % in toughness compared to TiO2-free ZTA. Additionally, the highest scratch resistance is observed at 3 wt% TiO2, evidenced by a minimal scratch depth of ∼7.53 μm. However, exceeding the 3 wt% solubility limit results in the formation of secondary phases, such as tialite (Al2TiO5) and zirconium titanate (ZrTiO4), which degrade the composite's properties. This research underscores the potential of TiO2 doping and microwave sintering to elevate the performance of ZTA ceramics, offering a pathway to superior materials for advanced applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波烧结和添加 TiO2 对氧化锆增韧氧化铝陶瓷的烧结性、机械性能和抗划伤性的同时影响
本文深入探讨了不同二氧化钛(TiO2)含量对氧化锆增韧氧化铝(ZTA)陶瓷复合材料的烧结性、物理和机械性能以及划痕行为的影响。通过将 TiO2 含量从 0 wt% 调整到 5 wt%,并采用先进的 1150 °C 微波烧结技术,该研究旨在降低 ZTA 的烧结温度。微波烧结以其高效和快速加工而著称,可在较低温度下显著提高材料性能。值得注意的是,在 ZTA 中加入 TiO2 可显著改善物理和机械属性,最佳的 TiO2 含量为 3 wt%。在此浓度下,复合材料获得了优异的性能:相对密度达 99%,显微硬度达 2002 HV,压痕断裂韧性达 6.13 MPa m0.5。与不含二氧化钛的 ZTA 相比,硬度和韧性分别提高了 120% 和 61%。此外,在 TiO2 含量为 3 wt% 时,抗划伤性最高,最小划痕深度为 7.53 μm。然而,如果溶解度超过 3 wt%,就会形成次生相,如钛铁矿(Al2TiO5)和钛酸锆(ZrTiO4),从而降低复合材料的性能。这项研究强调了掺杂 TiO2 和微波烧结技术在提高 ZTA 陶瓷性能方面的潜力,为先进应用领域提供了通向卓越材料的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
期刊最新文献
Polyetherimide copolymer film with room-temperature self-healing properties and high breakdown field strength Effect of epoxy resin addition on the acoustic impedance, microstructure, dielectric and piezoelectric properties of 1–3 connectivity lead-free barium zirconate titanate ceramic cement-based composites High-efficiency 1.6 μm-band fiber laser based on single Er3+-doped tungsten tellurite glass with high mechanical strength through tailored glass network Improvement of energy storage properties of BNT-based ceramics via compositional modification Effects of mechanical alloying methods on structural phase stability, chemical state, optical, electrical and ferroelectric properties in Sc-doped α-Fe2O3 system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1