Yu Li, Ren-Xiu Yao, Bo Xu, Yun-Jing Liu, Bai-Zhu Li, Ming Tang, Yin Yi, Zhi-Rui Wen, Xiao-Yue Wang, Xiao-Xin Tang
{"title":"The reproductive strategy of a typical distylous <i>Ophiorrhiza alatiflora</i> (Rubiaceae), in fragmented habitat.","authors":"Yu Li, Ren-Xiu Yao, Bo Xu, Yun-Jing Liu, Bai-Zhu Li, Ming Tang, Yin Yi, Zhi-Rui Wen, Xiao-Yue Wang, Xiao-Xin Tang","doi":"10.3389/fpls.2024.1492402","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Heterostyly is a genetically controlled style polymorphism, that plays an important role in promoting outcrossing and improving reproductive fitness. Although distyly is often studied in plants of the Rubiaceae family, little attention has been paid to the reproductive strategies of distylous species in fragmented habitats. Here, We report for the first time the growth of <i>Ophiorrhiza alatiflora</i>, a type distylous species, in karst areas and evaluate its reciprocity between long styled morph and short one. We analyze the two distyly morph differences in the ancillary polymorphic of flowers and explore their reproductive strategy in fragmented habitats.</p><p><strong>Methods: </strong>In this study, we measured the floral characteristics of different morphs and performed differential secondary metabolite analysis on different morphs and tissue organs; Different pollination treatments were carried out to observe the fruit set, pollen germination, and pollen tube elongation of <i>O. alatiflora</i>.</p><p><strong>Results and discussion: </strong>Our research indicates that <i>O. alatiflora</i> is a typical distylous plant for the distyly has high reciprocity. Both morphs exhibit the highest fruit set of intermorph outcrossing; The pollen germination and pollen tube elongation experiments have also demonstrated that the affinity of pollen from intermorph outcrossing is highest, regardless of whether it is the long or short morph as the maternal parent; Meanwhile, <i>O. alatiflora</i> is an incompletely self-incompatible plant that exhibits a certain degree of self-pollination and intramorph outcrossing, which may be one of the important means to ensure sustainable reproduction in severely disturbed habitats. In the ancillary polymorphic of flowers, L-morphs flowers produce more pollen, and S-morph flowers produce more ovules to improve their male-female fitness and compensate for the asymmetry of pollen flow; Compared with S-morphs, L-morphs contain significantly higher levels of several kinds of terpenoids. S-morphs produce more flavonoids than L-morphs. The differences in secondary metabolites between L-morphs and S-morphs are mainly reflected in the different nutritional organs (including stems and leaves). Overall, our work has revealed the unique reproductive strategy of <i>O. alatiflora</i> in fragmented habitats based on the characteristics of distyly, verifying the hypothesis that the distyly of <i>O. alatiflora</i> promotes outcrossing and avoids male-female interference, improving male-female fitness and this is the first time in the <i>Ophiorrhiza</i> genus.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1492402"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570894/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1492402","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Heterostyly is a genetically controlled style polymorphism, that plays an important role in promoting outcrossing and improving reproductive fitness. Although distyly is often studied in plants of the Rubiaceae family, little attention has been paid to the reproductive strategies of distylous species in fragmented habitats. Here, We report for the first time the growth of Ophiorrhiza alatiflora, a type distylous species, in karst areas and evaluate its reciprocity between long styled morph and short one. We analyze the two distyly morph differences in the ancillary polymorphic of flowers and explore their reproductive strategy in fragmented habitats.
Methods: In this study, we measured the floral characteristics of different morphs and performed differential secondary metabolite analysis on different morphs and tissue organs; Different pollination treatments were carried out to observe the fruit set, pollen germination, and pollen tube elongation of O. alatiflora.
Results and discussion: Our research indicates that O. alatiflora is a typical distylous plant for the distyly has high reciprocity. Both morphs exhibit the highest fruit set of intermorph outcrossing; The pollen germination and pollen tube elongation experiments have also demonstrated that the affinity of pollen from intermorph outcrossing is highest, regardless of whether it is the long or short morph as the maternal parent; Meanwhile, O. alatiflora is an incompletely self-incompatible plant that exhibits a certain degree of self-pollination and intramorph outcrossing, which may be one of the important means to ensure sustainable reproduction in severely disturbed habitats. In the ancillary polymorphic of flowers, L-morphs flowers produce more pollen, and S-morph flowers produce more ovules to improve their male-female fitness and compensate for the asymmetry of pollen flow; Compared with S-morphs, L-morphs contain significantly higher levels of several kinds of terpenoids. S-morphs produce more flavonoids than L-morphs. The differences in secondary metabolites between L-morphs and S-morphs are mainly reflected in the different nutritional organs (including stems and leaves). Overall, our work has revealed the unique reproductive strategy of O. alatiflora in fragmented habitats based on the characteristics of distyly, verifying the hypothesis that the distyly of O. alatiflora promotes outcrossing and avoids male-female interference, improving male-female fitness and this is the first time in the Ophiorrhiza genus.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.