{"title":"General relationship of local topologies, global dynamics, and bifurcation in cellular networks.","authors":"Qing Hu, Ruoyu Tang, Xinyu He, Ruiqi Wang","doi":"10.1038/s41540-024-00470-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular networks realize their functions by integrating intricate information embedded within local structures such as regulatory paths and feedback loops. However, the precise mechanisms of how local topologies determine global network dynamics and induce bifurcations remain unidentified. A critical step in unraveling the integration is to identify the governing principles, which underlie the mechanisms of information flow. Here, we develop the cumulative linearized approximation (CLA) algorithm to address this issue. Based on perturbation analysis and network decomposition, we theoretically demonstrate how perturbations affect the equilibrium variations through the integration of all regulatory paths and how stability of the equilibria is determined by distinct feedback loops. Two illustrative examples, i.e., a three-variable bistable system and a more intricate epithelial-mesenchymal transition (EMT) network, are chosen to validate the feasibility of this approach. These results establish a solid foundation for understanding information flow across cellular networks, highlighting the critical roles of local topologies in determining global network dynamics and the emergence of bifurcations within these networks. This work introduces a novel framework for investigating the general relationship between local topologies and global dynamics of cellular networks under perturbations.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"135"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00470-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular networks realize their functions by integrating intricate information embedded within local structures such as regulatory paths and feedback loops. However, the precise mechanisms of how local topologies determine global network dynamics and induce bifurcations remain unidentified. A critical step in unraveling the integration is to identify the governing principles, which underlie the mechanisms of information flow. Here, we develop the cumulative linearized approximation (CLA) algorithm to address this issue. Based on perturbation analysis and network decomposition, we theoretically demonstrate how perturbations affect the equilibrium variations through the integration of all regulatory paths and how stability of the equilibria is determined by distinct feedback loops. Two illustrative examples, i.e., a three-variable bistable system and a more intricate epithelial-mesenchymal transition (EMT) network, are chosen to validate the feasibility of this approach. These results establish a solid foundation for understanding information flow across cellular networks, highlighting the critical roles of local topologies in determining global network dynamics and the emergence of bifurcations within these networks. This work introduces a novel framework for investigating the general relationship between local topologies and global dynamics of cellular networks under perturbations.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.