{"title":"Biosensors with vancomycin and polymetallic metal–organic frameworks for colorimetric-fluorescent dual-mode detection and sterilization of bacteria","authors":"Wei Chen, Xiayu Peng, Lichao Kang, Shengnan Dong, Jian Zhang, Yunfeng Zhao, Fengxia Sun","doi":"10.1016/j.jhazmat.2024.136582","DOIUrl":null,"url":null,"abstract":"The development of a versatile platform for bacterial assay and elimination is urgently needed due to the danger that bacteria pose to human life. Here, we synthesized a trimetallic deposition and horseradish peroxidase (HRP)-embedded porous coordination network-224 hybrid nanozymes (PCN-224@AuPdPt@HRP) with outstanding peroxidase activity and fluorescence quenching ability. On this basis, we designed a dual recognition strategy-driven colorimetric-fluorescence dual-mode detection platform using <em>Listeria monocytogenes</em> as a pattern analyte. The platform consisted of an aptamer-modified PCN-224@AuPdPt@HRP (PCN-224@AuPdPt@HRP@Aptamer) specifically recognizing <em>Listeria monocytogenes</em> and vancomycin-coated 96-well plates. In the presence of vancomycin, which has the ability to recognize and inactivate gram-positive bacteria, the significant peroxidase activity of PCN-224@AuPdPt@HRP@Aptamer in the precipitate was able to catalyze the color change of the substrate by H<sub>2</sub>O<sub>2</sub>. Meanwhile, the residual PCN-224@AuPdPt@HRP@Aptamer in the supernatant was able to change the fluorescence of fluorescein-labeled deoxyribonucleic acid (FAM-DNA). In summary, this paper presents a multifunctional platform capable of detecting and eliminating residual bacteria in real environments. This strategy is expected to facilitate the development of multifunctional biosensors based on metal–organic framework probes and also provide environmental health.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"174 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136582","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of a versatile platform for bacterial assay and elimination is urgently needed due to the danger that bacteria pose to human life. Here, we synthesized a trimetallic deposition and horseradish peroxidase (HRP)-embedded porous coordination network-224 hybrid nanozymes (PCN-224@AuPdPt@HRP) with outstanding peroxidase activity and fluorescence quenching ability. On this basis, we designed a dual recognition strategy-driven colorimetric-fluorescence dual-mode detection platform using Listeria monocytogenes as a pattern analyte. The platform consisted of an aptamer-modified PCN-224@AuPdPt@HRP (PCN-224@AuPdPt@HRP@Aptamer) specifically recognizing Listeria monocytogenes and vancomycin-coated 96-well plates. In the presence of vancomycin, which has the ability to recognize and inactivate gram-positive bacteria, the significant peroxidase activity of PCN-224@AuPdPt@HRP@Aptamer in the precipitate was able to catalyze the color change of the substrate by H2O2. Meanwhile, the residual PCN-224@AuPdPt@HRP@Aptamer in the supernatant was able to change the fluorescence of fluorescein-labeled deoxyribonucleic acid (FAM-DNA). In summary, this paper presents a multifunctional platform capable of detecting and eliminating residual bacteria in real environments. This strategy is expected to facilitate the development of multifunctional biosensors based on metal–organic framework probes and also provide environmental health.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.