Di Wu, Laura Carter, Paul Kay, Joseph Holden, Ying Yin, Hongyan Guo
{"title":"Female zebrafish are more affected than males under polystyrene microplastics exposure","authors":"Di Wu, Laura Carter, Paul Kay, Joseph Holden, Ying Yin, Hongyan Guo","doi":"10.1016/j.jhazmat.2024.136616","DOIUrl":null,"url":null,"abstract":"Microplastics are ubiquitous in freshwater and can be absorbed into fish skin and gills, accumulate in the gut, and be transported to other tissues, thus posing a risk to fish health. Further studies are needed, however, to investigate effects such as endocrine disruption and multi-tissue toxicity. In this study, zebrafish were exposed to polystyrene (PS) microplastics and health-related indicators were measured, including skin mucus, gut damage, oxidative stress, stable isotope composition and reproduction as well as an assessment of changes to metabolites using a metabolomics approach. Results showed that concentrations of PS microplastics were higher in gills than those in the gut. Minimal impact to immunoglobulin M level and lysozyme activity in mucus indicated, however, that microplastic toxicity primarily stemmed from ingestion rather than disruption of skin mucus immunity. Female zebrafish were more affected by PS microplastics. Gut microbiota dysbiosis was induced, especially in females. Significant alterations in pathways associated with lipid and energy metabolism were observed in the liver of female fish. PS microplastics also induced sex steroid hormone disorder and reduced female egg production, possibly linked to the alteration of gut microbiota and hepatic metabolism. Combined, these results highlight the gender-specific toxicity of PS microplastics to zebrafish health, potentially harming their population.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"73 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136616","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics are ubiquitous in freshwater and can be absorbed into fish skin and gills, accumulate in the gut, and be transported to other tissues, thus posing a risk to fish health. Further studies are needed, however, to investigate effects such as endocrine disruption and multi-tissue toxicity. In this study, zebrafish were exposed to polystyrene (PS) microplastics and health-related indicators were measured, including skin mucus, gut damage, oxidative stress, stable isotope composition and reproduction as well as an assessment of changes to metabolites using a metabolomics approach. Results showed that concentrations of PS microplastics were higher in gills than those in the gut. Minimal impact to immunoglobulin M level and lysozyme activity in mucus indicated, however, that microplastic toxicity primarily stemmed from ingestion rather than disruption of skin mucus immunity. Female zebrafish were more affected by PS microplastics. Gut microbiota dysbiosis was induced, especially in females. Significant alterations in pathways associated with lipid and energy metabolism were observed in the liver of female fish. PS microplastics also induced sex steroid hormone disorder and reduced female egg production, possibly linked to the alteration of gut microbiota and hepatic metabolism. Combined, these results highlight the gender-specific toxicity of PS microplastics to zebrafish health, potentially harming their population.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.