Ti- and Ba-rich phlogopitic micas in alkaline basic and upper mantle igneous rocks; stoichiometry, stability, and Fe valence estimation reassessed and rationalised
{"title":"Ti- and Ba-rich phlogopitic micas in alkaline basic and upper mantle igneous rocks; stoichiometry, stability, and Fe valence estimation reassessed and rationalised","authors":"C. Michael B. Henderson","doi":"10.1016/j.gca.2024.10.011","DOIUrl":null,"url":null,"abstract":"Ti- and Ba-rich tri-octahedral micas occur in fractionated basic igneous rocks, metasomatized mantle peridotites, metamorphosed pelites/carbonates, and hydrothermally altered mineral deposits. Electron microprobe analyses (EMP), with all iron reported as FeO, were widely used in the 1970/80s to interpret Ti and Ba substitution mechanisms, based on 22 O<ce:sup loc=\"post\">2–</ce:sup> unit cell calculations, implying that cation vacancies occur in octahedral and/or intersheet sites. In 1996 EMP with chemical and physical analyses for ferric and total Fe, H<ce:inf loc=\"post\">2</ce:inf>O, (OH), and element-specific Fe X-ray Absorption Spectroscopy (both <ce:italic>K</ce:italic> and <ce:italic>L</ce:italic>-edges) established valence states for Fe and Ti and cation site occupancies, that ∼50 % O replaces (OH) molecules, and that 24 anion cell formulae show the absence of cation vacancies. Cell formula calculation protocol for phlogopitic micas is refined here and results tested against the stoichiometric formula for vacancy-free phlogopite, <ce:sup loc=\"post\">XII</ce:sup>K<ce:inf loc=\"post\">2</ce:inf><ce:sup loc=\"post\">VI</ce:sup>Mg<ce:inf loc=\"post\">6</ce:inf><ce:sup loc=\"post\">IV</ce:sup>[Si<ce:inf loc=\"post\">6</ce:inf>Al<ce:inf loc=\"post\">2</ce:inf>]O<ce:inf loc=\"post\">20</ce:inf>(OH)<ce:inf loc=\"post\">4</ce:inf>. Hypothetical sheet silicate compositions, calculated with fixed contents of vacancies linked to particular mixed-valence element substitutions, confirm that reliable unit cell formulae for natural mica solids require that each stoichiometric vacancy must be accounted for. If reliable estimates for ‘excess O’ (denoted <ce:sup loc=\"post\">W</ce:sup>O<ce:sup loc=\"post\">2−</ce:sup>) are assigned to EMP analyses, the proportion of the oxy-mica component in a mica solid solution can be defined. This approach is tested using published analyses for Ti- and Ba-rich biotites from fractionated basic and ultramafic volcanic igneous rocks (oxymica range 2.5–45 %; TiO<ce:inf loc=\"post\">2</ce:inf> up to 14 %; BaO up to 23 %), upper mantle peridotites (equivalent values 7–18 %; 6 %; 0.7 %), and metasomatised upper mantle (2–37 %; 9 %; 23 %). Enrichments of Ti and Ba in micas are clearly linked to the extra oxygen charge required to neutralise the more highly charged Ba<ce:sup loc=\"post\">2+</ce:sup> and Ti<ce:sup loc=\"post\">4+</ce:sup> replacing K<ce:sup loc=\"post\">+</ce:sup> and Mg<ce:sup loc=\"post\">2+</ce:sup>.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"99 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2024.10.011","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ti- and Ba-rich tri-octahedral micas occur in fractionated basic igneous rocks, metasomatized mantle peridotites, metamorphosed pelites/carbonates, and hydrothermally altered mineral deposits. Electron microprobe analyses (EMP), with all iron reported as FeO, were widely used in the 1970/80s to interpret Ti and Ba substitution mechanisms, based on 22 O2– unit cell calculations, implying that cation vacancies occur in octahedral and/or intersheet sites. In 1996 EMP with chemical and physical analyses for ferric and total Fe, H2O, (OH), and element-specific Fe X-ray Absorption Spectroscopy (both K and L-edges) established valence states for Fe and Ti and cation site occupancies, that ∼50 % O replaces (OH) molecules, and that 24 anion cell formulae show the absence of cation vacancies. Cell formula calculation protocol for phlogopitic micas is refined here and results tested against the stoichiometric formula for vacancy-free phlogopite, XIIK2VIMg6IV[Si6Al2]O20(OH)4. Hypothetical sheet silicate compositions, calculated with fixed contents of vacancies linked to particular mixed-valence element substitutions, confirm that reliable unit cell formulae for natural mica solids require that each stoichiometric vacancy must be accounted for. If reliable estimates for ‘excess O’ (denoted WO2−) are assigned to EMP analyses, the proportion of the oxy-mica component in a mica solid solution can be defined. This approach is tested using published analyses for Ti- and Ba-rich biotites from fractionated basic and ultramafic volcanic igneous rocks (oxymica range 2.5–45 %; TiO2 up to 14 %; BaO up to 23 %), upper mantle peridotites (equivalent values 7–18 %; 6 %; 0.7 %), and metasomatised upper mantle (2–37 %; 9 %; 23 %). Enrichments of Ti and Ba in micas are clearly linked to the extra oxygen charge required to neutralise the more highly charged Ba2+ and Ti4+ replacing K+ and Mg2+.
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.