Competitive and cooperative effects of chloride on palladium(II) adsorption to iron (oxyhydr)oxides: Implications for mobility during weathering

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geochimica et Cosmochimica Acta Pub Date : 2024-12-26 DOI:10.1016/j.gca.2024.12.029
Emily G. Wright, Xicheng He, Elaine D. Flynn, Daniel E. Giammar, Jeffrey G. Catalano
{"title":"Competitive and cooperative effects of chloride on palladium(II) adsorption to iron (oxyhydr)oxides: Implications for mobility during weathering","authors":"Emily G. Wright, Xicheng He, Elaine D. Flynn, Daniel E. Giammar, Jeffrey G. Catalano","doi":"10.1016/j.gca.2024.12.029","DOIUrl":null,"url":null,"abstract":"In surface and near-surface weathering environments, the mobilization and partial loss of palladium (Pd) under oxidizing and weakly acidic conditions has been attributed to aqueous chloride complexation. However, prior work has also observed that a portion of Pd is retained by iron (oxyhydr)oxides in the weathering zone. The effect chloride has on the relative amount of Pd mobilization versus retention by iron (oxyhydr)oxides is currently unclear. We studied the effect of chloride complexation on Pd(II) adsorption to two iron (oxyhydr)oxides, hematite and 2-line ferrihydrite, at pH 4. Increasing chloride concentration suppresses Pd adsorption for both hematite and ferrihydrite, which display similar binding affinities under the conditions studied. Thermodynamic modeling of aqueous Pd speciation indicates that greater suppression of binding to iron (oxyhydr)oxides should occur than is observed because of the strength of Pd-Cl complexation, implying that additional interactions at the mineral surface are counteracting this effect. While increasing dissolved chloride concentration does not measurably impact mineral surface charging, extended X-ray absorption fine structure (EXAFS) spectra indicate that ternary Pd-Cl surface complexes form on both hematite and ferrihydrite. The number of Cl ligands in the surface species increase at greater chloride concentration. A mixture of bidentate and monodentate surface species are indicated by the EXAFS spectra, although the fitting uncertainties precludes determining whether these vary in relative abundance with chloride concentration. In order to offset the effect of strong aqueous Pd-Cl complexation and align with our EXAFS results, a surface complexation model developed for Pd adsorption to hematite involves a mixture of three ternary surface complexes containing 1, 2, and 3 chloride ligands. Our results show that Pd is mobilized as a chloride complex in platinum-group element-rich weathering zones. Porewater chloride concentrations are thus a dominant control on Pd retention by iron (oxyhydr)oxides in these weakly acidic environments.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"94 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2024.12.029","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In surface and near-surface weathering environments, the mobilization and partial loss of palladium (Pd) under oxidizing and weakly acidic conditions has been attributed to aqueous chloride complexation. However, prior work has also observed that a portion of Pd is retained by iron (oxyhydr)oxides in the weathering zone. The effect chloride has on the relative amount of Pd mobilization versus retention by iron (oxyhydr)oxides is currently unclear. We studied the effect of chloride complexation on Pd(II) adsorption to two iron (oxyhydr)oxides, hematite and 2-line ferrihydrite, at pH 4. Increasing chloride concentration suppresses Pd adsorption for both hematite and ferrihydrite, which display similar binding affinities under the conditions studied. Thermodynamic modeling of aqueous Pd speciation indicates that greater suppression of binding to iron (oxyhydr)oxides should occur than is observed because of the strength of Pd-Cl complexation, implying that additional interactions at the mineral surface are counteracting this effect. While increasing dissolved chloride concentration does not measurably impact mineral surface charging, extended X-ray absorption fine structure (EXAFS) spectra indicate that ternary Pd-Cl surface complexes form on both hematite and ferrihydrite. The number of Cl ligands in the surface species increase at greater chloride concentration. A mixture of bidentate and monodentate surface species are indicated by the EXAFS spectra, although the fitting uncertainties precludes determining whether these vary in relative abundance with chloride concentration. In order to offset the effect of strong aqueous Pd-Cl complexation and align with our EXAFS results, a surface complexation model developed for Pd adsorption to hematite involves a mixture of three ternary surface complexes containing 1, 2, and 3 chloride ligands. Our results show that Pd is mobilized as a chloride complex in platinum-group element-rich weathering zones. Porewater chloride concentrations are thus a dominant control on Pd retention by iron (oxyhydr)oxides in these weakly acidic environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
期刊最新文献
Methane Index and TEX86 values in cold seep sediments: Implications for paleo-environmental reconstructions Gamma-irradiation-induced reduction of aqueous Se(VI) by natural pyrite Two isotopically distinct populations of refractory inclusions in the EHa3 chondrite Sahara 97072 – Significance for understanding the evolution of the CAI-formation region Competitive and cooperative effects of chloride on palladium(II) adsorption to iron (oxyhydr)oxides: Implications for mobility during weathering Oxygen isotope constraints on proto-kimberlite melt modification through assimilation of low δ18O recycled crust in the deep lithosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1