Zheng Xu, Jin Cheng, Yuanlong Hu, Yanghejia Wu, Siyuan Fan, Gaoxin Yu, Yunwen Wang, Cheng Lian, Honglai Liu
{"title":"Sacrificing Surfactants to Improve Oil Recovery: A Fluid Density Functional Theory Study","authors":"Zheng Xu, Jin Cheng, Yuanlong Hu, Yanghejia Wu, Siyuan Fan, Gaoxin Yu, Yunwen Wang, Cheng Lian, Honglai Liu","doi":"10.1021/acs.langmuir.4c03075","DOIUrl":null,"url":null,"abstract":"In the chemically enhanced oil recovery (CEOR) processes, heavy components in crude oil, such as asphaltenes, adhere to reservoir rocks, significantly impeding crude oil extraction. Surfactants are frequently utilized to improve oil recovery due to their ability to reduce interfacial tension (IFT) and modify surface wettability. Nevertheless, indiscriminate surfactant usage may result in resource wastage and hinder the attainment of optimal recovery outcomes. Therefore, it is urgent to accurately and efficiently screen out optimal surfactants suitable for different oil fields. This work employs fluid density functional theory (FDFT) to investigate the competitive adsorption mechanism of surfactants and asphaltenes on rock interfaces. We examined the impact of surfactants on asphaltene adsorption and determined the optimal surfactant concentration and chain length for differing reservoir electrical properties and asphaltene compositions. Furthermore, a comprehensive assessment of surfactants was conducted, considering both performance and economic factors. The findings contribute to a deeper comprehension of the displacement effect of surfactants on asphaltenes and offer scientific screening solutions for surfactants in oil recovery processes.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"170 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03075","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the chemically enhanced oil recovery (CEOR) processes, heavy components in crude oil, such as asphaltenes, adhere to reservoir rocks, significantly impeding crude oil extraction. Surfactants are frequently utilized to improve oil recovery due to their ability to reduce interfacial tension (IFT) and modify surface wettability. Nevertheless, indiscriminate surfactant usage may result in resource wastage and hinder the attainment of optimal recovery outcomes. Therefore, it is urgent to accurately and efficiently screen out optimal surfactants suitable for different oil fields. This work employs fluid density functional theory (FDFT) to investigate the competitive adsorption mechanism of surfactants and asphaltenes on rock interfaces. We examined the impact of surfactants on asphaltene adsorption and determined the optimal surfactant concentration and chain length for differing reservoir electrical properties and asphaltene compositions. Furthermore, a comprehensive assessment of surfactants was conducted, considering both performance and economic factors. The findings contribute to a deeper comprehension of the displacement effect of surfactants on asphaltenes and offer scientific screening solutions for surfactants in oil recovery processes.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).