Brody Tallon, Josh Lipton-Duffin, Jennifer MacLeod
{"title":"Exfoliation of Graphene onto Si(111)-7 × 7 under Ultrahigh Vacuum Provides Some Protection against Exposure to Air","authors":"Brody Tallon, Josh Lipton-Duffin, Jennifer MacLeod","doi":"10.1021/acs.langmuir.4c03712","DOIUrl":null,"url":null,"abstract":"The investigation of graphene as a protective coating for different materials has been an area of active research for well over a decade. However, graphene’s ability to protect clean, reconstructed silicon from ambient gases has remained uninvestigated. Here, we describe the use of a clean ultrahigh vacuum transfer method to deposit graphene onto the Si(111)-7 × 7 reconstruction. Using a combination of X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM), we confirmed the successful transfer of graphene onto the surface. We then exposed the graphene-protected surface to 120 L of ambient air in the vacuum chamber and found that although the reconstruction is destroyed on unprotected terraces, clean and ordered silicon can be imaged through the transferred graphene. Exposing the sample to ambient air at atmospheric pressure for 2 days produces a strong signature of oxidation in XPS, and STM images revealed that although graphene can still be identified, the regions beneath the graphene appear amorphous. This work demonstrates that graphene provides some protection against the oxidation of Si(111)-7 × 7 by air, but that this protective ability is not sufficient to forestall oxidation during prolonged exposure to atmospheric conditions.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"7 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03712","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of graphene as a protective coating for different materials has been an area of active research for well over a decade. However, graphene’s ability to protect clean, reconstructed silicon from ambient gases has remained uninvestigated. Here, we describe the use of a clean ultrahigh vacuum transfer method to deposit graphene onto the Si(111)-7 × 7 reconstruction. Using a combination of X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM), we confirmed the successful transfer of graphene onto the surface. We then exposed the graphene-protected surface to 120 L of ambient air in the vacuum chamber and found that although the reconstruction is destroyed on unprotected terraces, clean and ordered silicon can be imaged through the transferred graphene. Exposing the sample to ambient air at atmospheric pressure for 2 days produces a strong signature of oxidation in XPS, and STM images revealed that although graphene can still be identified, the regions beneath the graphene appear amorphous. This work demonstrates that graphene provides some protection against the oxidation of Si(111)-7 × 7 by air, but that this protective ability is not sufficient to forestall oxidation during prolonged exposure to atmospheric conditions.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).