Lennert Van der Meulen, Senne Bonnaerens, Ine Van Caekenberghe, Dirk De Clercq, Veerle Segers, Pieter Fiers
{"title":"Habitual Running Style Matters: Duty Factor, and Not Stride Frequency, Relates to Loading Magnitude.","authors":"Lennert Van der Meulen, Senne Bonnaerens, Ine Van Caekenberghe, Dirk De Clercq, Veerle Segers, Pieter Fiers","doi":"10.5114/jhk/191528","DOIUrl":null,"url":null,"abstract":"<p><p>Running style is temporally defined by a duty factor and stride frequency and believed to be related to the loading experienced during ever step. However, the exact relationship between both temporal variables and loading magnitude is still unknown. We aimed to identify the relationship between a duty factor and stride frequency with external load measures, joint reaction forces and joint moments. Thirty-one healthy female recreational runners ran across a 25-m runway at a speed of 2.30 ± 0.05 m·s<sup>-1</sup>. Ground reaction forces and motion capture data were used to determine the maximal vertical ground reaction force, the vertical instantaneous loading rate, peak braking force, peak joint extension moments and peak joint reaction forces at the knee and the ankle. The habitual duty factor and stride frequency of runners did not correlate with each other. The duty factor was found to be a significant predictor of maximal vertical ground reaction force (R<sup>2</sup> = 0.585), peak braking force (R<sup>2</sup> = 0.153), peak knee extension moment (R<sup>2</sup> = 0.149), ankle plantar flexion moment (R<sup>2</sup> = 0.225) and peak joint reaction forces at the knee (R<sup>2</sup> = 0.591) and the ankle (R<sup>2</sup> = 0.592), but not of the vertical instantaneous loading rate. Stride frequency had no significant predictive value. In conclusion, the maximal loading and potential injury risk of female recreational runners running with high duty factors are lower compared to those of peers running with lower duty factors.</p>","PeriodicalId":16055,"journal":{"name":"Journal of Human Kinetics","volume":"94 ","pages":"37-45"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Kinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/jhk/191528","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Running style is temporally defined by a duty factor and stride frequency and believed to be related to the loading experienced during ever step. However, the exact relationship between both temporal variables and loading magnitude is still unknown. We aimed to identify the relationship between a duty factor and stride frequency with external load measures, joint reaction forces and joint moments. Thirty-one healthy female recreational runners ran across a 25-m runway at a speed of 2.30 ± 0.05 m·s-1. Ground reaction forces and motion capture data were used to determine the maximal vertical ground reaction force, the vertical instantaneous loading rate, peak braking force, peak joint extension moments and peak joint reaction forces at the knee and the ankle. The habitual duty factor and stride frequency of runners did not correlate with each other. The duty factor was found to be a significant predictor of maximal vertical ground reaction force (R2 = 0.585), peak braking force (R2 = 0.153), peak knee extension moment (R2 = 0.149), ankle plantar flexion moment (R2 = 0.225) and peak joint reaction forces at the knee (R2 = 0.591) and the ankle (R2 = 0.592), but not of the vertical instantaneous loading rate. Stride frequency had no significant predictive value. In conclusion, the maximal loading and potential injury risk of female recreational runners running with high duty factors are lower compared to those of peers running with lower duty factors.
期刊介绍:
The Journal of Human Kinetics is an open access interdisciplinary periodical offering the latest research in the science of human movement studies. This comprehensive professional journal features articles and research notes encompassing such topic areas as: Kinesiology, Exercise Physiology and Nutrition, Sports Training and Behavioural Sciences in Sport, but especially considering elite and competitive aspects of sport.
The journal publishes original papers, invited reviews, short communications and letters to the Editors. Manuscripts submitted to the journal must contain novel data on theoretical or experimental research or on practical applications in the field of sport sciences.
The Journal of Human Kinetics is published in March, June, September and December.
We encourage scientists from around the world to submit their papers to our periodical.