{"title":"Poor Joint Work in the Lower Limbs during a Tennis Forehand Groundstroke after a Cross-Over Step Inhibits an Increase in the Racket Speed.","authors":"Yuta Kawamoto, Takahito Suzuki, Yoichi Iino, Shinsuke Yoshioka, Daisuke Takeshita, Fukashiro Senshi","doi":"10.5114/jhk/186535","DOIUrl":null,"url":null,"abstract":"<p><p>A forward run-up and stepping are used to accelerate hitting tools or throwing objects in sports. This study aimed to investigate the effect of a forward cross-over step on the speed of a hitting tool by analyzing the joint work and mechanical energy of the whole body and the hitting tool using inverse dynamics. Thirteen advanced tennis players performed forehand groundstrokes at maximum effort with and without a forward cross-over step. From the whole body plus racket perspective, the body-weight-normalized mechanical energy at the start of the hitting motion increased by 1.74 ± 0.42 J·kg<sup>-1</sup> due to the cross-over step. However, the increase in the magnitude of total negative joint work, primarily attributed to the lower limbs, was 1.38 ± 0.31 J·kg<sup>-1</sup> due to the cross-over step, conventionally regarded as energy absorption. Consequently, the mechanical energy of the whole body plus the racket at ball impact was comparable between the conditions. Nevertheless, from the segmental perspective, the mechanical work performed by the net shoulder joint force of the playing upper limb with the cross-over step during the hitting motion was greater than that without the cross-over step. Subsequently, the slight increase in the mechanical energy of the playing upper limb plus racket (0.25 ± 0.21 J·kg<sup>-1</sup>) resulted in increased racket speed (4.3%). Considering the comparable total mechanical energy and a resultant increase in racket speed, players and coaches should not overestimate the effect of the forward step on racket speed.</p>","PeriodicalId":16055,"journal":{"name":"Journal of Human Kinetics","volume":"94 ","pages":"77-90"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Kinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/jhk/186535","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A forward run-up and stepping are used to accelerate hitting tools or throwing objects in sports. This study aimed to investigate the effect of a forward cross-over step on the speed of a hitting tool by analyzing the joint work and mechanical energy of the whole body and the hitting tool using inverse dynamics. Thirteen advanced tennis players performed forehand groundstrokes at maximum effort with and without a forward cross-over step. From the whole body plus racket perspective, the body-weight-normalized mechanical energy at the start of the hitting motion increased by 1.74 ± 0.42 J·kg-1 due to the cross-over step. However, the increase in the magnitude of total negative joint work, primarily attributed to the lower limbs, was 1.38 ± 0.31 J·kg-1 due to the cross-over step, conventionally regarded as energy absorption. Consequently, the mechanical energy of the whole body plus the racket at ball impact was comparable between the conditions. Nevertheless, from the segmental perspective, the mechanical work performed by the net shoulder joint force of the playing upper limb with the cross-over step during the hitting motion was greater than that without the cross-over step. Subsequently, the slight increase in the mechanical energy of the playing upper limb plus racket (0.25 ± 0.21 J·kg-1) resulted in increased racket speed (4.3%). Considering the comparable total mechanical energy and a resultant increase in racket speed, players and coaches should not overestimate the effect of the forward step on racket speed.
期刊介绍:
The Journal of Human Kinetics is an open access interdisciplinary periodical offering the latest research in the science of human movement studies. This comprehensive professional journal features articles and research notes encompassing such topic areas as: Kinesiology, Exercise Physiology and Nutrition, Sports Training and Behavioural Sciences in Sport, but especially considering elite and competitive aspects of sport.
The journal publishes original papers, invited reviews, short communications and letters to the Editors. Manuscripts submitted to the journal must contain novel data on theoretical or experimental research or on practical applications in the field of sport sciences.
The Journal of Human Kinetics is published in March, June, September and December.
We encourage scientists from around the world to submit their papers to our periodical.