Agata Leońska-Duniec, Ewelina Maculewicz, Myosotis Massidda, Maciej Buryta, Andrzej Mastalerz, Paweł Cięszczyk
{"title":"Impact of the <i>TTN</i> C > T Polymorphism on Selected Variables of Aerobic and Anaerobic Capacity after a 12-Week Training Program.","authors":"Agata Leońska-Duniec, Ewelina Maculewicz, Myosotis Massidda, Maciej Buryta, Andrzej Mastalerz, Paweł Cięszczyk","doi":"10.5114/jhk/191847","DOIUrl":null,"url":null,"abstract":"<p><p>The TTN gene encodes a large muscle protein called titin, which provides structure, stability, and flexibility to skeletal and cardiac sarcomeres. The aim of this study was to determine whether the TTN C > T polymorphism (rs10497520) influenced training-induced changes in selected variables of aerobic and anaerobic capacity. We studied genotypes distribution in a group of 156 Caucasian females examined for aerobic capacity evaluated by maximal oxygen uptake (VO<sub>2max</sub>), and anaerobic capacity measured with the Wingate anaerobic test, before and after a 12-week training program. The most important finding was a genotype by training interaction for anaerobic capacity (AnC) during the Wingate test (p = 0.003). In response to training, carriers of the CT and TT genotypes demonstrated a significant increase in the total amount of work accomplished. We also showed that the applied training program improved all the Wingate test variables in the CT + TT genotype group by 10%. The obtained results suggest that the CT and TT genotypes may enhance anaerobic power and anaerobic capacity changes induced by regular training. We also suggest that T allele carriers may possess a metabolic adaptive advantage towards the anaerobic metabolism. Thus, the TTN gene may be considered a promising marker used in sports science, underlying variability in achieving sporting goals in events where the anaerobic energy system predominates.</p>","PeriodicalId":16055,"journal":{"name":"Journal of Human Kinetics","volume":"94 ","pages":"117-125"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Kinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/jhk/191847","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The TTN gene encodes a large muscle protein called titin, which provides structure, stability, and flexibility to skeletal and cardiac sarcomeres. The aim of this study was to determine whether the TTN C > T polymorphism (rs10497520) influenced training-induced changes in selected variables of aerobic and anaerobic capacity. We studied genotypes distribution in a group of 156 Caucasian females examined for aerobic capacity evaluated by maximal oxygen uptake (VO2max), and anaerobic capacity measured with the Wingate anaerobic test, before and after a 12-week training program. The most important finding was a genotype by training interaction for anaerobic capacity (AnC) during the Wingate test (p = 0.003). In response to training, carriers of the CT and TT genotypes demonstrated a significant increase in the total amount of work accomplished. We also showed that the applied training program improved all the Wingate test variables in the CT + TT genotype group by 10%. The obtained results suggest that the CT and TT genotypes may enhance anaerobic power and anaerobic capacity changes induced by regular training. We also suggest that T allele carriers may possess a metabolic adaptive advantage towards the anaerobic metabolism. Thus, the TTN gene may be considered a promising marker used in sports science, underlying variability in achieving sporting goals in events where the anaerobic energy system predominates.
期刊介绍:
The Journal of Human Kinetics is an open access interdisciplinary periodical offering the latest research in the science of human movement studies. This comprehensive professional journal features articles and research notes encompassing such topic areas as: Kinesiology, Exercise Physiology and Nutrition, Sports Training and Behavioural Sciences in Sport, but especially considering elite and competitive aspects of sport.
The journal publishes original papers, invited reviews, short communications and letters to the Editors. Manuscripts submitted to the journal must contain novel data on theoretical or experimental research or on practical applications in the field of sport sciences.
The Journal of Human Kinetics is published in March, June, September and December.
We encourage scientists from around the world to submit their papers to our periodical.