DrugRepPT: a deep pre-training and fine-tuning framework for drug repositioning based on drug's expression perturbation and treatment effectiveness.

Shuyue Fan, Kuo Yang, Kezhi Lu, Xin Dong, Xianan Li, Qiang Zhu, Shao Li, Jianyang Zeng, Xuezhong Zhou
{"title":"DrugRepPT: a deep pre-training and fine-tuning framework for drug repositioning based on drug's expression perturbation and treatment effectiveness.","authors":"Shuyue Fan, Kuo Yang, Kezhi Lu, Xin Dong, Xianan Li, Qiang Zhu, Shao Li, Jianyang Zeng, Xuezhong Zhou","doi":"10.1093/bioinformatics/btae692","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Drug repositioning, identifying novel indications for approved drugs, is a cost-effective strategy in drug discovery. Despite numerous proposed drug repositioning models, integrating network-based features, differential gene expression, and chemical structures for high-performance drug repositioning remains challenging.</p><p><strong>Results: </strong>We propose a comprehensive deep pre-training and fine-tuning framework for drug repositioning, termed DrugRepPT. Initially, we design a graph pre-training module employing model-augmented contrastive learning on a vast drug-disease heterogeneous graph to capture nuanced interactions and expression perturbations after intervention. Subsequently, we introduce a fine-tuning module leveraging a graph residual-like convolution network to elucidate intricate interactions between diseases and drugs. Moreover, a Bayesian multi-loss approach is introduced to balance the existence and effectiveness of drug treatment effectively. Extensive experiments showcase the efficacy of our framework, with DrugRepPT exhibiting remarkable performance improvements compared to SOTA baseline methods (Improvement 106.13% on Hit@1 and 54.45% on mean reciprocal rank). The reliability of predicted results is further validated through two case studies, ie, gastritis and fatty liver, via literature validation, network medicine analysis, and docking screening.</p><p><strong>Availability and implementation: </strong>The code and results are available at https://github.com/2020MEAI/DrugRepPT.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Drug repositioning, identifying novel indications for approved drugs, is a cost-effective strategy in drug discovery. Despite numerous proposed drug repositioning models, integrating network-based features, differential gene expression, and chemical structures for high-performance drug repositioning remains challenging.

Results: We propose a comprehensive deep pre-training and fine-tuning framework for drug repositioning, termed DrugRepPT. Initially, we design a graph pre-training module employing model-augmented contrastive learning on a vast drug-disease heterogeneous graph to capture nuanced interactions and expression perturbations after intervention. Subsequently, we introduce a fine-tuning module leveraging a graph residual-like convolution network to elucidate intricate interactions between diseases and drugs. Moreover, a Bayesian multi-loss approach is introduced to balance the existence and effectiveness of drug treatment effectively. Extensive experiments showcase the efficacy of our framework, with DrugRepPT exhibiting remarkable performance improvements compared to SOTA baseline methods (Improvement 106.13% on Hit@1 and 54.45% on mean reciprocal rank). The reliability of predicted results is further validated through two case studies, ie, gastritis and fatty liver, via literature validation, network medicine analysis, and docking screening.

Availability and implementation: The code and results are available at https://github.com/2020MEAI/DrugRepPT.

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DrugRepPT:基于药物表达扰动和治疗效果的药物重新定位深度预训练和微调框架。
动机药物重新定位,即确定已批准药物的新适应症,是药物发现过程中一种具有成本效益的策略。尽管提出了许多药物重新定位模型,但整合基于网络的特征、差异基因表达和化学结构以实现高性能的药物重新定位仍具有挑战性:我们为药物重新定位提出了一个全面的深度预训练和微调框架,称为 DrugRepPT。首先,我们设计了一个图预训练模块,在庞大的药物-疾病异构图上采用模型增强对比学习,捕捉细微的相互作用和干预后的表达扰动。随后,我们引入了一个微调模块,利用类似图残差的卷积网络来阐明疾病与药物之间错综复杂的相互作用。此外,我们还引入了贝叶斯多损失方法,以有效平衡药物治疗的存在性和有效性。广泛的实验证明了我们框架的有效性,与 SOTA 基线方法相比,DrugRepPT 的性能有了显著提高(Hit@1 提高了 106.13%,平均倒数等级提高了 54.45%)。通过文献验证、网络医学分析和对接筛选,两个案例研究(即胃炎和脂肪肝)进一步验证了预测结果的可靠性:代码和结果见 https://github.com/2020MEAI/DrugRepPT.Supplementary 信息:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RUCova: Removal of Unwanted Covariance in mass cytometry data. ViraLM: Empowering Virus Discovery through the Genome Foundation Model. CVR-BBI: An Open-Source VR Platform for Multi-User Collaborative Brain to Brain Interfaces. Expert-guided protein Language Models enable accurate and blazingly fast fitness prediction. FungiFun3: Systemic gene set enrichment analysis for fungal species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1