ABA-activated low-nanomolar Ca2+–CPK signalling controls root cap cycle plasticity and stress adaptation

IF 15.8 1区 生物学 Q1 PLANT SCIENCES Nature Plants Pub Date : 2024-11-22 DOI:10.1038/s41477-024-01865-y
Ziwei Lin, Ying Guo, Ruiyuan Zhang, Yiming Li, Yue Wu, Jen Sheen, Kun-hsiang Liu
{"title":"ABA-activated low-nanomolar Ca2+–CPK signalling controls root cap cycle plasticity and stress adaptation","authors":"Ziwei Lin, Ying Guo, Ruiyuan Zhang, Yiming Li, Yue Wu, Jen Sheen, Kun-hsiang Liu","doi":"10.1038/s41477-024-01865-y","DOIUrl":null,"url":null,"abstract":"Abscisic acid (ABA) regulates plant stress adaptation, growth and reproduction. Despite extensive ABA–Ca2+ signalling links, imaging ABA-induced increases in Ca2+ concentration has been challenging, except in guard cells. Here we visualize ABA-triggered [Ca2+] dynamics in diverse organs and cell types of Arabidopsis thaliana using a genetically encoded Ca2+ ratiometric sensor with a low-nanomolar Ca2+-binding affinity and a large dynamic range. The subcellular-targeted Ca2+ ratiometric sensor reveals time-resolved and unique spatiotemporal Ca2+ signatures from the initial plasma-membrane nanodomain, to cytosol, to nuclear oscillation. Via receptors and sucrose-non-fermenting1-related protein kinases (SnRK2.2/2.3/2.6), ABA activates low-nanomolar Ca2+ transient and Ca2+-sensor protein kinase (CPK10/30/32) signalling in the root cap cycle from stem cells to cell detachment. Surprisingly, unlike the prevailing NaCl-stimulated micromolar Ca2+ spike, salt stress induces a low-nanomolar Ca2+ transient through ABA signalling, repressing key transcription factors that dictate cell fate and enzymes that are crucial to root cap maturation and slough. Our findings uncover ABA–Ca2+–CPK signalling that modulates root cap cycle plasticity in adaptation to adverse environments. This study reveals ABA-triggered low-nanomolar Ca2+ dynamics in diverse plant organs and cell types using an ultrasensitive Ca2+ biosensor. Spatiotemporal Ca2+ dynamics modulate the root cap cycle in adaptation to stress through ABA–Ca2+–CPK signalling.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"90-104"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01865-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abscisic acid (ABA) regulates plant stress adaptation, growth and reproduction. Despite extensive ABA–Ca2+ signalling links, imaging ABA-induced increases in Ca2+ concentration has been challenging, except in guard cells. Here we visualize ABA-triggered [Ca2+] dynamics in diverse organs and cell types of Arabidopsis thaliana using a genetically encoded Ca2+ ratiometric sensor with a low-nanomolar Ca2+-binding affinity and a large dynamic range. The subcellular-targeted Ca2+ ratiometric sensor reveals time-resolved and unique spatiotemporal Ca2+ signatures from the initial plasma-membrane nanodomain, to cytosol, to nuclear oscillation. Via receptors and sucrose-non-fermenting1-related protein kinases (SnRK2.2/2.3/2.6), ABA activates low-nanomolar Ca2+ transient and Ca2+-sensor protein kinase (CPK10/30/32) signalling in the root cap cycle from stem cells to cell detachment. Surprisingly, unlike the prevailing NaCl-stimulated micromolar Ca2+ spike, salt stress induces a low-nanomolar Ca2+ transient through ABA signalling, repressing key transcription factors that dictate cell fate and enzymes that are crucial to root cap maturation and slough. Our findings uncover ABA–Ca2+–CPK signalling that modulates root cap cycle plasticity in adaptation to adverse environments. This study reveals ABA-triggered low-nanomolar Ca2+ dynamics in diverse plant organs and cell types using an ultrasensitive Ca2+ biosensor. Spatiotemporal Ca2+ dynamics modulate the root cap cycle in adaptation to stress through ABA–Ca2+–CPK signalling.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ABA激活的低纳摩尔Ca2+-CPK信号控制根帽周期可塑性和胁迫适应性
脱落酸(ABA)调节植物的胁迫适应、生长和繁殖。尽管 ABA 与 Ca2+ 信号有广泛的联系,但除了在保卫细胞中,对 ABA 诱导的 Ca2+ 浓度增加进行成像一直是一项挑战。在这里,我们利用一种基因编码的 Ca2+ 比率传感器(具有低纳摩尔 Ca2+ 结合亲和力和较大的动态范围)对拟南芥不同器官和细胞类型中 ABA 触发的[Ca2+]动态进行了可视化。这种亚细胞靶向 Ca2+ 比率测定传感器揭示了从最初的质膜纳米域到细胞质再到核振荡的时间分辨和独特的时空 Ca2+ 特征。通过受体和蔗糖-非发酵1相关蛋白激酶(SnRK2.2/2.3/2.6),ABA激活了从干细胞到细胞脱落的根帽周期中的低纳摩尔Ca2+瞬时和Ca2+感应蛋白激酶(CPK10/30/32)信号。令人惊讶的是,与普遍的 NaCl 刺激微摩尔 Ca2+ 峰值不同,盐胁迫通过 ABA 信号诱导低纳摩尔 Ca2+ 瞬态,抑制决定细胞命运的关键转录因子以及对根帽成熟和脱落至关重要的酶。我们的研究结果揭示了 ABA-Ca2+-CPK 信号在适应不利环境过程中调节根帽周期可塑性的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
phenol-based buffer
阿拉丁
ABA
阿拉丁
ABA
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
期刊最新文献
Loving the alien Cryo-EM structures of Arabidopsis CNGC1 and CNGC5 reveal molecular mechanisms underlying gating and calcium selectivity Conserved immunomodulation and variation in host association by Xanthomonadales commensals in Arabidopsis root microbiota PNET1 is a key regulator of NPC dynamics and cell division When more becomes too much in acid growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1