Ziwei Lin, Ying Guo, Ruiyuan Zhang, Yiming Li, Yue Wu, Jen Sheen, Kun-hsiang Liu
{"title":"ABA-activated low-nanomolar Ca2+–CPK signalling controls root cap cycle plasticity and stress adaptation","authors":"Ziwei Lin, Ying Guo, Ruiyuan Zhang, Yiming Li, Yue Wu, Jen Sheen, Kun-hsiang Liu","doi":"10.1038/s41477-024-01865-y","DOIUrl":null,"url":null,"abstract":"Abscisic acid (ABA) regulates plant stress adaptation, growth and reproduction. Despite extensive ABA–Ca2+ signalling links, imaging ABA-induced increases in Ca2+ concentration has been challenging, except in guard cells. Here we visualize ABA-triggered [Ca2+] dynamics in diverse organs and cell types of Arabidopsis thaliana using a genetically encoded Ca2+ ratiometric sensor with a low-nanomolar Ca2+-binding affinity and a large dynamic range. The subcellular-targeted Ca2+ ratiometric sensor reveals time-resolved and unique spatiotemporal Ca2+ signatures from the initial plasma-membrane nanodomain, to cytosol, to nuclear oscillation. Via receptors and sucrose-non-fermenting1-related protein kinases (SnRK2.2/2.3/2.6), ABA activates low-nanomolar Ca2+ transient and Ca2+-sensor protein kinase (CPK10/30/32) signalling in the root cap cycle from stem cells to cell detachment. Surprisingly, unlike the prevailing NaCl-stimulated micromolar Ca2+ spike, salt stress induces a low-nanomolar Ca2+ transient through ABA signalling, repressing key transcription factors that dictate cell fate and enzymes that are crucial to root cap maturation and slough. Our findings uncover ABA–Ca2+–CPK signalling that modulates root cap cycle plasticity in adaptation to adverse environments. This study reveals ABA-triggered low-nanomolar Ca2+ dynamics in diverse plant organs and cell types using an ultrasensitive Ca2+ biosensor. Spatiotemporal Ca2+ dynamics modulate the root cap cycle in adaptation to stress through ABA–Ca2+–CPK signalling.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"90-104"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01865-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abscisic acid (ABA) regulates plant stress adaptation, growth and reproduction. Despite extensive ABA–Ca2+ signalling links, imaging ABA-induced increases in Ca2+ concentration has been challenging, except in guard cells. Here we visualize ABA-triggered [Ca2+] dynamics in diverse organs and cell types of Arabidopsis thaliana using a genetically encoded Ca2+ ratiometric sensor with a low-nanomolar Ca2+-binding affinity and a large dynamic range. The subcellular-targeted Ca2+ ratiometric sensor reveals time-resolved and unique spatiotemporal Ca2+ signatures from the initial plasma-membrane nanodomain, to cytosol, to nuclear oscillation. Via receptors and sucrose-non-fermenting1-related protein kinases (SnRK2.2/2.3/2.6), ABA activates low-nanomolar Ca2+ transient and Ca2+-sensor protein kinase (CPK10/30/32) signalling in the root cap cycle from stem cells to cell detachment. Surprisingly, unlike the prevailing NaCl-stimulated micromolar Ca2+ spike, salt stress induces a low-nanomolar Ca2+ transient through ABA signalling, repressing key transcription factors that dictate cell fate and enzymes that are crucial to root cap maturation and slough. Our findings uncover ABA–Ca2+–CPK signalling that modulates root cap cycle plasticity in adaptation to adverse environments. This study reveals ABA-triggered low-nanomolar Ca2+ dynamics in diverse plant organs and cell types using an ultrasensitive Ca2+ biosensor. Spatiotemporal Ca2+ dynamics modulate the root cap cycle in adaptation to stress through ABA–Ca2+–CPK signalling.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.