Characterisation and modelling of continuous electrospun poly(ɛ- caprolactone) filaments for biological tissue repair.

Thales Zanetti Ferreira, Zhouzhou Pan, Pierre-Alexis Mouthuy, Laurence Brassart
{"title":"Characterisation and modelling of continuous electrospun poly(ɛ- caprolactone) filaments for biological tissue repair.","authors":"Thales Zanetti Ferreira, Zhouzhou Pan, Pierre-Alexis Mouthuy, Laurence Brassart","doi":"10.1016/j.jmbbm.2024.106810","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the mechanical behaviour of poly(ɛ-caprolactone) (PCL) continuous filaments produced by a novel electrospinning (ES) method. These filaments can be processed into woven or braided structures, showing great promises as scaffolds for ligament and tendon repair. Mechanical characterisation of the filaments using DMA and uniaxial tensile tests shows that the filament response is viscoelastic-viscoplastic. Filaments tested using bollard grips present an initially linear elastic response, followed by plastic yielding with two-stage hardening. The filaments are highly stretchable, reaching more than 1000% strain. The different deformation stages are correlated to the evolution of the micro-fibre network observed using SEM, involving the untangling, alignment and stretching of the fibres. A large deformation viscoelastic-viscoplastic model is proposed, which successfully captures the mechanical response of the filaments under non-monotonic loading conditions. Our study also highlights the sensitivity of the measured mechanical response to the type of mechanical grips, namely bollard or screw-side grips.</p>","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"161 ","pages":"106810"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmbbm.2024.106810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the mechanical behaviour of poly(ɛ-caprolactone) (PCL) continuous filaments produced by a novel electrospinning (ES) method. These filaments can be processed into woven or braided structures, showing great promises as scaffolds for ligament and tendon repair. Mechanical characterisation of the filaments using DMA and uniaxial tensile tests shows that the filament response is viscoelastic-viscoplastic. Filaments tested using bollard grips present an initially linear elastic response, followed by plastic yielding with two-stage hardening. The filaments are highly stretchable, reaching more than 1000% strain. The different deformation stages are correlated to the evolution of the micro-fibre network observed using SEM, involving the untangling, alignment and stretching of the fibres. A large deformation viscoelastic-viscoplastic model is proposed, which successfully captures the mechanical response of the filaments under non-monotonic loading conditions. Our study also highlights the sensitivity of the measured mechanical response to the type of mechanical grips, namely bollard or screw-side grips.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物组织修复的连续电纺聚(ɛ-己内酯)丝的特性和建模。
本研究探讨了通过新型电纺丝(ES)方法生产的聚(ɛ-己内酯)(PCL)连续细丝的机械性能。这些长丝可加工成编织或编结结构,有望用作韧带和肌腱修复的支架。使用 DMA 和单轴拉伸测试对长丝进行的机械特性分析表明,长丝的反应是粘弹性-粘塑性的。使用系缆夹具测试的长丝最初呈现线性弹性响应,随后出现塑性屈服和两阶段硬化。长丝具有很强的拉伸性,应变超过 1000%。不同的变形阶段与使用扫描电子显微镜观察到的微纤维网络的演变相关,包括纤维的解开、排列和拉伸。我们提出了一个大变形粘弹性-粘塑性模型,它成功地捕捉到了非单调加载条件下纤维丝的机械响应。我们的研究还强调了所测得的机械响应对机械夹具类型(即系索或螺钉侧夹具)的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterisation and modelling of continuous electrospun poly(ɛ- caprolactone) filaments for biological tissue repair. TiNbSn alloy plates with low Young's modulus modulates interfragmentary movement and promote osteosynthesis in rat femur. Evaluation of flexural strength of additively manufactured resin materials compared to auto-polymerized provisional resin with and without hydrothermal aging. A Novel non-invasive optical framework for simultaneous analysis of contractility and calcium in single-cell cardiomyocytes. Influence of CAD/CAM diamond bur wear on the accuracy and surface roughness of dental ceramic restorations: A systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1