Ahmed Abdulrab Ali Ebrahim, Faroq Saad, Abdelmajid Belafhal
{"title":"Intensity features of the general model vortex higher‑order cosh‑Gaussian beam in free space and gradient-index media","authors":"Ahmed Abdulrab Ali Ebrahim, Faroq Saad, Abdelmajid Belafhal","doi":"10.1007/s11082-024-07818-1","DOIUrl":null,"url":null,"abstract":"<div><p>In the framework of the generalized Huygens–Fresnel diffraction integral and paraxial approximation theory, the propagation features of the general model vortex higher-order cosh-Gaussian beam (GMvHchGB) in a free space (FS) and a gradient-index medium (GIM) are studied. The analytical formulas of the GMvHchGB propagating through the considered media are derived. According to the derived formulas, some numerical examples of the normalized intensity distributions and corresponding phase structure of the GMvHchGB in both FS and GIM are performed under different parameter conditions during propagation setups. The obtained results show that the beam with higher decentered parameters, the GMvHchGB propagating in FS case cannot maintain its initial shape during the propagation process, whereas the beam propagation in the GIM case will keep the original shape unchanged with a repeated self-focusing along propagation distances. Finally, the numerical results of both intensity and phase distributions demonstrated that the beam order <i>N</i> significantly influences the vortex property of the beam, which enhances the clear importance of the current work.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07818-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the framework of the generalized Huygens–Fresnel diffraction integral and paraxial approximation theory, the propagation features of the general model vortex higher-order cosh-Gaussian beam (GMvHchGB) in a free space (FS) and a gradient-index medium (GIM) are studied. The analytical formulas of the GMvHchGB propagating through the considered media are derived. According to the derived formulas, some numerical examples of the normalized intensity distributions and corresponding phase structure of the GMvHchGB in both FS and GIM are performed under different parameter conditions during propagation setups. The obtained results show that the beam with higher decentered parameters, the GMvHchGB propagating in FS case cannot maintain its initial shape during the propagation process, whereas the beam propagation in the GIM case will keep the original shape unchanged with a repeated self-focusing along propagation distances. Finally, the numerical results of both intensity and phase distributions demonstrated that the beam order N significantly influences the vortex property of the beam, which enhances the clear importance of the current work.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.