2D amorphous solids for sub-nanometer scale devices

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nano Convergence Pub Date : 2024-11-24 DOI:10.1186/s40580-024-00453-2
Hyeonseo Jang, Hyeonju Kim, Gayoon Kim, Suyeon Cho, Heejun Yang
{"title":"2D amorphous solids for sub-nanometer scale devices","authors":"Hyeonseo Jang,&nbsp;Hyeonju Kim,&nbsp;Gayoon Kim,&nbsp;Suyeon Cho,&nbsp;Heejun Yang","doi":"10.1186/s40580-024-00453-2","DOIUrl":null,"url":null,"abstract":"<div><p>Amorphous solids are a type of condensed matter characterized by the absence of long-range order in their lattice structure. However, they still exhibit short- or medium-range order, which contributes to their versatile local and global electronic and chemical properties. Recently, 2D amorphous solids have gained attention for their exceptional mechanical and electronic features, which are unattainable in conventional crystalline materials. This review highlights the physical properties of ultrathin 2D amorphous solids, which are formed through covalent bonding and feature polyhedron structures with shared edges and corners. Two notable examples of 2D amorphous solids include honeycomb-structured nanosheets with mixed hybrid orbitals and layered materials with reduced coordination numbers of the elements. We provide an in-depth discussion of (1) the phase transition between crystalline and amorphous phases in 2D solids, (2) advanced synthetic methods for producing high-quality amorphous films with precise thickness control, and (3) the potential applications of sub-nanometer scale 2D amorphous solids. Lastly, we explore their potential to revolutionize the design of highly versatile electronic devices at sub-nanometer scales.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00453-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00453-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous solids are a type of condensed matter characterized by the absence of long-range order in their lattice structure. However, they still exhibit short- or medium-range order, which contributes to their versatile local and global electronic and chemical properties. Recently, 2D amorphous solids have gained attention for their exceptional mechanical and electronic features, which are unattainable in conventional crystalline materials. This review highlights the physical properties of ultrathin 2D amorphous solids, which are formed through covalent bonding and feature polyhedron structures with shared edges and corners. Two notable examples of 2D amorphous solids include honeycomb-structured nanosheets with mixed hybrid orbitals and layered materials with reduced coordination numbers of the elements. We provide an in-depth discussion of (1) the phase transition between crystalline and amorphous phases in 2D solids, (2) advanced synthetic methods for producing high-quality amorphous films with precise thickness control, and (3) the potential applications of sub-nanometer scale 2D amorphous solids. Lastly, we explore their potential to revolutionize the design of highly versatile electronic devices at sub-nanometer scales.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于亚纳米级设备的二维非晶固体
非晶态固体是一种凝聚态物质,其特点是晶格结构中缺乏长程有序性。然而,它们仍然表现出短程或中程有序,这有助于它们具有多变的局部和全局电子和化学特性。最近,二维非晶固体因其特殊的机械和电子特性而备受关注,这是传统晶体材料无法实现的。本综述重点介绍超薄二维非晶固体的物理性质,它们通过共价键形成,具有共边共角的多面体结构。二维非晶固体的两个显著例子包括具有混合混合轨道的蜂巢结构纳米片和元素配位数减少的层状材料。我们深入探讨了:(1) 二维固体中结晶相与非晶相之间的相变;(2) 生产具有精确厚度控制的高质量非晶薄膜的先进合成方法;(3) 亚纳米级二维非晶固体的潜在应用。最后,我们将探讨二维非晶固体在革新亚纳米尺度多功能电子器件设计方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
期刊最新文献
2D amorphous solids for sub-nanometer scale devices Advances in materials and technologies for digital light processing 3D printing Simple and Cost-Effective Generation of 3D Cell Sheets and Spheroids Using Curvature-Controlled Paraffin Wax Substrates Multifunctional extracellular vesicles and edaravone-loaded scaffolds for kidney tissue regeneration by activating GDNF/RET pathway Highly sensitive multiplexed colorimetric lateral flow immunoassay by plasmon-controlled metal–silica isoform nanocomposites: PINs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1