{"title":"Network structure and fluctuation data improve inference of metabolic interaction strengths with the inverse Jacobian.","authors":"Jiahang Li, Wolfram Weckwerth, Steffen Waldherr","doi":"10.1038/s41540-024-00457-y","DOIUrl":null,"url":null,"abstract":"<p><p>Based on high-throughput metabolomics data, the recently introduced inverse differential Jacobian algorithm can infer regulatory factors and molecular causality within metabolic networks close to steady-state. However, these studies assumed perturbations acting independently on each metabolite, corresponding to metabolic system fluctuations. In contrast, emerging evidence puts forward internal network fluctuations, particularly from gene expression fluctuations, leading to correlated perturbations on metabolites. Here, we propose a novel approach that exploits these correlations to quantify relevant metabolic interactions. By integrating enzyme-related fluctuations in the construction of an appropriate fluctuation matrix, we are able to exploit the underlying reaction network structure for the inverse Jacobian algorithm. We applied this approach to a model-based artificial dataset for validation, and to an experimental breast cancer dataset with two different cell lines. By highlighting metabolic interactions with significantly changed interaction strengths, the inverse Jacobian approach identified critical dynamic regulation points which are confirming previous breast cancer studies.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"137"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00457-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Based on high-throughput metabolomics data, the recently introduced inverse differential Jacobian algorithm can infer regulatory factors and molecular causality within metabolic networks close to steady-state. However, these studies assumed perturbations acting independently on each metabolite, corresponding to metabolic system fluctuations. In contrast, emerging evidence puts forward internal network fluctuations, particularly from gene expression fluctuations, leading to correlated perturbations on metabolites. Here, we propose a novel approach that exploits these correlations to quantify relevant metabolic interactions. By integrating enzyme-related fluctuations in the construction of an appropriate fluctuation matrix, we are able to exploit the underlying reaction network structure for the inverse Jacobian algorithm. We applied this approach to a model-based artificial dataset for validation, and to an experimental breast cancer dataset with two different cell lines. By highlighting metabolic interactions with significantly changed interaction strengths, the inverse Jacobian approach identified critical dynamic regulation points which are confirming previous breast cancer studies.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.