Ziqi Gao , Eric J. Mei , Xin He , Philip K. Hopke , Stefanie Ebelt , David Q. Rich , Armistead G. Russell
{"title":"Multicity accountability and uncertainty assessment of the impacts of regulations on air quality in Atlanta, New York City, and Southern California","authors":"Ziqi Gao , Eric J. Mei , Xin He , Philip K. Hopke , Stefanie Ebelt , David Q. Rich , Armistead G. Russell","doi":"10.1016/j.atmosenv.2024.120947","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple regulations have been promulgated to improve air quality, and previous studies have used an accountability chain to evaluate the effects of these regulations on emission levels, air quality, and human health. However, quantifying these impacts through the accountability chain is complex due to interactions between multiple factors that can influence the efficacy of control policies and introduce uncertainties at each step. We evaluated and quantified the impact of emission controls on electricity generating units (EGU) and motor vehicle sources on emissions and air quality via Generalized Additive Models. These GAMs have minimal bias (around 10<sup>−5</sup> to 10<sup>−2</sup> μg/m<sup>3</sup> or ppbV) and r<sup>2</sup> values for daily concentrations ranging from 0.4 to 0.7 Counterfactual air pollutant concentrations, in the absence of EGU and mobile source regulations, were calculated using estimated counterfactual emissions for the period 2005 to 2019 in Atlanta, New York City, and California's South Coast Air Basin. Counterfactual air pollutant concentrations indicated that the effects of regulations on air pollutants varied depending on the season and location. Predicted counterfactual air pollutant concentrations were generally 2–12 times higher than the measured concentrations at these sites, except for ozone. The impact of regulations on ozone concentrations typically resulted in reduced peak ozone values in the summer, but increased concentrations in the winter. Monte Carlo modeling found small to modest uncertainties, depending on the pollutant, location and regulations assessed. Counterfactual concentrations predicted in this project will be used in the assessment of the trends of toxicity in PM<sub>2.5</sub>.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"342 ","pages":"Article 120947"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024006228","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple regulations have been promulgated to improve air quality, and previous studies have used an accountability chain to evaluate the effects of these regulations on emission levels, air quality, and human health. However, quantifying these impacts through the accountability chain is complex due to interactions between multiple factors that can influence the efficacy of control policies and introduce uncertainties at each step. We evaluated and quantified the impact of emission controls on electricity generating units (EGU) and motor vehicle sources on emissions and air quality via Generalized Additive Models. These GAMs have minimal bias (around 10−5 to 10−2 μg/m3 or ppbV) and r2 values for daily concentrations ranging from 0.4 to 0.7 Counterfactual air pollutant concentrations, in the absence of EGU and mobile source regulations, were calculated using estimated counterfactual emissions for the period 2005 to 2019 in Atlanta, New York City, and California's South Coast Air Basin. Counterfactual air pollutant concentrations indicated that the effects of regulations on air pollutants varied depending on the season and location. Predicted counterfactual air pollutant concentrations were generally 2–12 times higher than the measured concentrations at these sites, except for ozone. The impact of regulations on ozone concentrations typically resulted in reduced peak ozone values in the summer, but increased concentrations in the winter. Monte Carlo modeling found small to modest uncertainties, depending on the pollutant, location and regulations assessed. Counterfactual concentrations predicted in this project will be used in the assessment of the trends of toxicity in PM2.5.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.