Xin Pei, Leiku Yang, Weiqian Ji, Mengnan Li, Zhe Peng, Xiaoqian Cheng, Xiaofeng Lu
{"title":"Global evaluation of NOAA-20 VIIRS dark target aerosol products over land and ocean","authors":"Xin Pei, Leiku Yang, Weiqian Ji, Mengnan Li, Zhe Peng, Xiaoqian Cheng, Xiaofeng Lu","doi":"10.1016/j.atmosenv.2024.120949","DOIUrl":null,"url":null,"abstract":"<div><div>The Dark Target (DT) algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi-NPP (SNPP) and NOAA-20 satellites to extend the aerosol data record from the Moderate Resolution Imaging Spectrometer (MODIS). The newly released VIIRS DT Version 2.0 (V2.0) dataset includes NOAA-20 aerosol products for the first time. This study provides the first evaluation of NOAA-20 VIIRS DT aerosol products, including aerosol optical depth (AOD) and Ångstrom exponent (AE), for the period 2018–2022 using Aerosol Robotic Network (AERONET) and Maritime Aerosol Network (MAN) measurements. In addition, the operational DT aerosol products from SNPP VIIRS (V2.0) and MODIS (Collection 6.1) are also used for comparison purposes. Overall, NOAA-20 AODs over land and ocean exhibit good validation metrics globally, showing comparability to MODIS products and superiority over overestimated SNPP products. Nevertheless, it is worth noting that in South Africa specifically, NOAA-20 land AODs tends to display more pronounced negative biases, despite all products being underestimated. Furthermore, all ocean AE products demonstrate high correlation coefficients (>0.83) with the ground-based data, meeting the fraction of expected accuracy (>80%). Encouragingly, NOAA-20 AE product has significantly improved the persistent issue of overestimation at low-value in MODIS product, making it a more preferable choice for usage. Error analysis reveals that the performance of all three land products decreases in sparsely vegetated areas and when the solar zenith angle is small. However, NOAA-20 AOD exhibits relatively stable performance and is less affected by variations in aerosol loading, observation geometry, and surface vegetation cover. In addition, the performance of AOD and AE over ocean is significantly influenced by scattering angle and wind speed. This research is anticipated to serve as a reference for the utilization of operational VIIRS DT aerosol products and possible algorithm optimization.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"342 ","pages":"Article 120949"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024006241","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Dark Target (DT) algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi-NPP (SNPP) and NOAA-20 satellites to extend the aerosol data record from the Moderate Resolution Imaging Spectrometer (MODIS). The newly released VIIRS DT Version 2.0 (V2.0) dataset includes NOAA-20 aerosol products for the first time. This study provides the first evaluation of NOAA-20 VIIRS DT aerosol products, including aerosol optical depth (AOD) and Ångstrom exponent (AE), for the period 2018–2022 using Aerosol Robotic Network (AERONET) and Maritime Aerosol Network (MAN) measurements. In addition, the operational DT aerosol products from SNPP VIIRS (V2.0) and MODIS (Collection 6.1) are also used for comparison purposes. Overall, NOAA-20 AODs over land and ocean exhibit good validation metrics globally, showing comparability to MODIS products and superiority over overestimated SNPP products. Nevertheless, it is worth noting that in South Africa specifically, NOAA-20 land AODs tends to display more pronounced negative biases, despite all products being underestimated. Furthermore, all ocean AE products demonstrate high correlation coefficients (>0.83) with the ground-based data, meeting the fraction of expected accuracy (>80%). Encouragingly, NOAA-20 AE product has significantly improved the persistent issue of overestimation at low-value in MODIS product, making it a more preferable choice for usage. Error analysis reveals that the performance of all three land products decreases in sparsely vegetated areas and when the solar zenith angle is small. However, NOAA-20 AOD exhibits relatively stable performance and is less affected by variations in aerosol loading, observation geometry, and surface vegetation cover. In addition, the performance of AOD and AE over ocean is significantly influenced by scattering angle and wind speed. This research is anticipated to serve as a reference for the utilization of operational VIIRS DT aerosol products and possible algorithm optimization.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.