{"title":"Aerodynamic optimization of aircraft wings using machine learning","authors":"M. Hasan , S. Redonnet , D. Zhongmin","doi":"10.1016/j.advengsoft.2024.103801","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a fast yet reliable optimization framework for the aerodynamic design of transonic aircraft wings. Combining Computational Fluid Dynamics (CFD) and Machine Learning (ML), the framework is successfully applied to the Common Research Model (CRM) benchmark aircraft proposed by NASA. The framework relies on a series of automated CFD simulations, from which no less than 160 planform variations of the CRM wing are assessed from an aerodynamic standpoint. This database is used to educate an ML surrogate model, for which two specific algorithms are explored, namely eXtreme Gradient Boosting (XGB) and Light Gradient Boosting Machine (LGBM). Once trained with 80 % of this database and tested with the remaining 20 %, the ML surrogates are employed to explore a larger design space, their optimum being then inferred using an optimization framework relying on a Multi-Objective Genetic Algorithm (MOGAO). Each ML-based optimal planform is then simulated through CFD to confirm its aerodynamic merits, which are then compared against those of a conventional, fully CFD-based optimization. The comparison is very favourable, the best ML-based optimal planform exhibiting similar performances as its CFD-optimized counterpart (e.g. a 14 % higher lift-to-drag ratio) for only half of the CPU cost. Overall, this study demonstrates the potential of ML-based methods for optimizing aircraft wings, thereby paving the way to the adoption of more disruptive, data-driven aircraft design paradigms.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103801"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824002084","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a fast yet reliable optimization framework for the aerodynamic design of transonic aircraft wings. Combining Computational Fluid Dynamics (CFD) and Machine Learning (ML), the framework is successfully applied to the Common Research Model (CRM) benchmark aircraft proposed by NASA. The framework relies on a series of automated CFD simulations, from which no less than 160 planform variations of the CRM wing are assessed from an aerodynamic standpoint. This database is used to educate an ML surrogate model, for which two specific algorithms are explored, namely eXtreme Gradient Boosting (XGB) and Light Gradient Boosting Machine (LGBM). Once trained with 80 % of this database and tested with the remaining 20 %, the ML surrogates are employed to explore a larger design space, their optimum being then inferred using an optimization framework relying on a Multi-Objective Genetic Algorithm (MOGAO). Each ML-based optimal planform is then simulated through CFD to confirm its aerodynamic merits, which are then compared against those of a conventional, fully CFD-based optimization. The comparison is very favourable, the best ML-based optimal planform exhibiting similar performances as its CFD-optimized counterpart (e.g. a 14 % higher lift-to-drag ratio) for only half of the CPU cost. Overall, this study demonstrates the potential of ML-based methods for optimizing aircraft wings, thereby paving the way to the adoption of more disruptive, data-driven aircraft design paradigms.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.