Folded graphene reinforced metal matrix nanocomposites with comprehensively enhanced tensile mechanical properties

IF 4 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Advances in Engineering Software Pub Date : 2024-11-30 DOI:10.1016/j.advengsoft.2024.103829
Pan Shi , Yao Chen , Tong Guo , Yongming Tu , Jian Feng
{"title":"Folded graphene reinforced metal matrix nanocomposites with comprehensively enhanced tensile mechanical properties","authors":"Pan Shi ,&nbsp;Yao Chen ,&nbsp;Tong Guo ,&nbsp;Yongming Tu ,&nbsp;Jian Feng","doi":"10.1016/j.advengsoft.2024.103829","DOIUrl":null,"url":null,"abstract":"<div><div>It is urgent to develop advanced materials with high strength, high toughness and good ductility for modern engineering structures. Graphene reinforced metal matrix nanocomposites exhibit significantly enhanced strength and toughness, but their ductility remains relatively low due to the inherent tensile brittleness of graphene. Inspired by the origami concept, we utilize the surface hydrogenation method to develop an armchair-like folded graphene (AFG) structure as reinforcement for metal matrix composites. Molecular dynamics simulations show that the AFG structure can simultaneously enhance the tensile strength, stiffness, ductility, and toughness of copper (Cu) matrix composites. Compared with pristine graphene/Cu nanocomposites, AFG/Cu nanocomposites exhibit better ductility and toughness, while maintaining comparable strength and stiffness. Furthermore, the mechanical properties of AFG/Cu nanocomposites can be tuned by altering the degree of AFG folding and the distances between adjacent hydrogenated zones. The strengthening and toughening mechanism is that mechanically strong AFG can effectively block dislocation propagation across the metal-graphene interface before it unfolds to fracture. Such mechanism can be extended to other 2D nanomaterials reinforced metal matrix nanocomposites, opening up an avenue for developing high-performance nanocomposites.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103829"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824002369","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

It is urgent to develop advanced materials with high strength, high toughness and good ductility for modern engineering structures. Graphene reinforced metal matrix nanocomposites exhibit significantly enhanced strength and toughness, but their ductility remains relatively low due to the inherent tensile brittleness of graphene. Inspired by the origami concept, we utilize the surface hydrogenation method to develop an armchair-like folded graphene (AFG) structure as reinforcement for metal matrix composites. Molecular dynamics simulations show that the AFG structure can simultaneously enhance the tensile strength, stiffness, ductility, and toughness of copper (Cu) matrix composites. Compared with pristine graphene/Cu nanocomposites, AFG/Cu nanocomposites exhibit better ductility and toughness, while maintaining comparable strength and stiffness. Furthermore, the mechanical properties of AFG/Cu nanocomposites can be tuned by altering the degree of AFG folding and the distances between adjacent hydrogenated zones. The strengthening and toughening mechanism is that mechanically strong AFG can effectively block dislocation propagation across the metal-graphene interface before it unfolds to fracture. Such mechanism can be extended to other 2D nanomaterials reinforced metal matrix nanocomposites, opening up an avenue for developing high-performance nanocomposites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Engineering Software
Advances in Engineering Software 工程技术-计算机:跨学科应用
CiteScore
7.70
自引率
4.20%
发文量
169
审稿时长
37 days
期刊介绍: The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving. The scope of the journal includes: • Innovative computational strategies and numerical algorithms for large-scale engineering problems • Analysis and simulation techniques and systems • Model and mesh generation • Control of the accuracy, stability and efficiency of computational process • Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing) • Advanced visualization techniques, virtual environments and prototyping • Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations • Application of object-oriented technology to engineering problems • Intelligent human computer interfaces • Design automation, multidisciplinary design and optimization • CAD, CAE and integrated process and product development systems • Quality and reliability.
期刊最新文献
Editorial Board Folded graphene reinforced metal matrix nanocomposites with comprehensively enhanced tensile mechanical properties Efficiency of the dynamic relaxation method in the stabilisation process of bridge and building frame Aerodynamic optimization of aircraft wings using machine learning Shear lag and shear deformation in box girders considering tendon transverse layout by improved beam element model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1