{"title":"Analytic solutions for equatorial, Kelvin, Rossby, and Yanai beams","authors":"Julian P. McCreary Jr. , Theodore W. Burkhardt","doi":"10.1016/j.pocean.2024.103378","DOIUrl":null,"url":null,"abstract":"<div><div>Wind-driven equatorial Kelvin, Rossby, and Yanai waves are known to propagate vertically, as well as zonally, and packets of them can form “beams” that descend into the deep ocean along ray paths consistent with wave-group theory. Here, we obtain analytic solutions to a simplified ocean model that provide a more complete description of beam properties and dynamics than in previous studies.</div><div>The model is a linear, continuously stratified (LCS) system, in which the bottom is ignored and the background Vaisala frequency <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> is constant. Solutions are forced by an oscillatory wind stress, <span><math><mrow><msup><mrow><mi>τ</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>=</mo><msubsup><mrow><mi>τ</mi></mrow><mrow><mi>o</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mi>X</mi><mfenced><mrow><mi>x</mi></mrow></mfenced><mo>exp</mo><mfenced><mrow><mo>−</mo><mi>i</mi><mi>σ</mi><mi>t</mi></mrow></mfenced></mrow></math></span>, where: <span><math><mi>α</mi></math></span> is <span><math><mi>x</mi></math></span> or <span><math><mi>y</mi></math></span>; <span><math><mrow><mi>X</mi><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></math></span> is confined to the region <span><math><mrow><mo>−</mo><mi>L</mi><mo><</mo><mi>x</mi><mo><</mo><mi>L</mi></mrow></math></span> and increases and decreases monotonically; and <span><math><msup><mrow><mi>τ</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> enters the ocean as a body force with the profile <span><math><mrow><mi>Z</mi><mfenced><mrow><mi>z</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>2</mn><mo>/</mo><mi>π</mi></mrow></mfenced><mi>h</mi><mo>/</mo><mfenced><mrow><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow></math></span>. Under these restrictions, solutions can be represented as cosine transforms in <span><math><mi>z</mi></math></span> that can be readily inverted.</div><div>Beam solutions for all three wave types have similar mathematical forms, and hence share many properties. Among other things, the solutions show how the structure and amplitude of beams depend on the above model parameters. Potential impacts of processes neglected in the solutions are noted.</div></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"230 ","pages":"Article 103378"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124001848","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Wind-driven equatorial Kelvin, Rossby, and Yanai waves are known to propagate vertically, as well as zonally, and packets of them can form “beams” that descend into the deep ocean along ray paths consistent with wave-group theory. Here, we obtain analytic solutions to a simplified ocean model that provide a more complete description of beam properties and dynamics than in previous studies.
The model is a linear, continuously stratified (LCS) system, in which the bottom is ignored and the background Vaisala frequency is constant. Solutions are forced by an oscillatory wind stress, , where: is or ; is confined to the region and increases and decreases monotonically; and enters the ocean as a body force with the profile . Under these restrictions, solutions can be represented as cosine transforms in that can be readily inverted.
Beam solutions for all three wave types have similar mathematical forms, and hence share many properties. Among other things, the solutions show how the structure and amplitude of beams depend on the above model parameters. Potential impacts of processes neglected in the solutions are noted.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.