Zhiming Dong, Liang Yuan, Bing Yang, Fan Xue, Weisheng Lu
{"title":"Benchmarking computer vision models for automated construction waste sorting","authors":"Zhiming Dong, Liang Yuan, Bing Yang, Fan Xue, Weisheng Lu","doi":"10.1016/j.resconrec.2024.108026","DOIUrl":null,"url":null,"abstract":"<div><div>Waste sorting is a critical process in construction waste management system. Computer vision (CV) offers waste sorting automation potential by recognizing waste composition and instructing robots or other mechanical devices accordingly. However, how the plethora of CV models developed perform relative to each other remains underexplored, making model selection challenging for researchers and practitioners. This study aims to benchmark existing CV models towards automated construction waste segregation. Seventeen models were selected and trained with unified configuration, and then their performance was evaluated on the aspect of accuracy, efficiency, and robustness, respectively. In experimental results, BEiT attained top accuracy (58.31 % MIoU) while FastFCN had the best efficiency (12.87 ms). SAN displayed the least standard deviation (4.41 %) for robustness evaluation. This research contributes a reliable reference for CV model selection, advancing automated construction waste sorting research and practices, and ultimately promoting efficient recycling while reducing the environmental impact of construction and demolition waste.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"213 ","pages":"Article 108026"},"PeriodicalIF":11.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924006177","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Waste sorting is a critical process in construction waste management system. Computer vision (CV) offers waste sorting automation potential by recognizing waste composition and instructing robots or other mechanical devices accordingly. However, how the plethora of CV models developed perform relative to each other remains underexplored, making model selection challenging for researchers and practitioners. This study aims to benchmark existing CV models towards automated construction waste segregation. Seventeen models were selected and trained with unified configuration, and then their performance was evaluated on the aspect of accuracy, efficiency, and robustness, respectively. In experimental results, BEiT attained top accuracy (58.31 % MIoU) while FastFCN had the best efficiency (12.87 ms). SAN displayed the least standard deviation (4.41 %) for robustness evaluation. This research contributes a reliable reference for CV model selection, advancing automated construction waste sorting research and practices, and ultimately promoting efficient recycling while reducing the environmental impact of construction and demolition waste.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.