Wei-Hong Liu , Qi-Jun Liu , Fu-Sheng Liu , Zheng-Tang Liu
{"title":"Machine learning approaches for predicting impact sensitivity and detonation performances of energetic materials","authors":"Wei-Hong Liu , Qi-Jun Liu , Fu-Sheng Liu , Zheng-Tang Liu","doi":"10.1016/j.jechem.2024.10.035","DOIUrl":null,"url":null,"abstract":"<div><div>Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials. Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge. Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators, potentially accelerating the development process of energetic materials. In this background, impact sensitivity, detonation performances, and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out. Four machine learning algorithms were employed to predict various properties of energetic materials, including impact sensitivity, detonation velocity, detonation pressure, and Gurney energy. Analysis of Pearson coefficients and feature importance showed that the heat of explosion, oxygen balance, decomposition products, and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials. Oxygen balance, decomposition products, and density have a strong correlation with detonation performances. Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark, the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances: oxygen balance values should be between −40% and −30%, density should range from 1.66 to 1.72 g/cm<sup>3</sup>, HOMO energy levels should be between −6.34 and −6.31 eV, and lipophilicity should be between −1.0 and 0.1, 4.49 and 5.59. These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials, but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 161-171"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209549562400740X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials. Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge. Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators, potentially accelerating the development process of energetic materials. In this background, impact sensitivity, detonation performances, and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out. Four machine learning algorithms were employed to predict various properties of energetic materials, including impact sensitivity, detonation velocity, detonation pressure, and Gurney energy. Analysis of Pearson coefficients and feature importance showed that the heat of explosion, oxygen balance, decomposition products, and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials. Oxygen balance, decomposition products, and density have a strong correlation with detonation performances. Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark, the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances: oxygen balance values should be between −40% and −30%, density should range from 1.66 to 1.72 g/cm3, HOMO energy levels should be between −6.34 and −6.31 eV, and lipophilicity should be between −1.0 and 0.1, 4.49 and 5.59. These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials, but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy