Tailoring Na-ion flux homogenization strategy towards long-cycling and fast-charging sodium metal batteries

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-11-24 DOI:10.1016/j.jechem.2024.10.057
Lin Zhou , Shengwei Dong , Zhuomin Qiang , Chaoqun Zhang , Anran Shi , Yanbin Ning , Ziwei Liu , Cong Chen , Yan Zhang , Dalong Li , Shuaifeng Lou
{"title":"Tailoring Na-ion flux homogenization strategy towards long-cycling and fast-charging sodium metal batteries","authors":"Lin Zhou ,&nbsp;Shengwei Dong ,&nbsp;Zhuomin Qiang ,&nbsp;Chaoqun Zhang ,&nbsp;Anran Shi ,&nbsp;Yanbin Ning ,&nbsp;Ziwei Liu ,&nbsp;Cong Chen ,&nbsp;Yan Zhang ,&nbsp;Dalong Li ,&nbsp;Shuaifeng Lou","doi":"10.1016/j.jechem.2024.10.057","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium metal batteries (SMBs) are promising candidates for next-generation energy storage devices owing to their excellent safety performance and natural abundance of sodium. However, the insurmountable obstacles of dendrite formation and quick capacity decay are caused by an unstable and inhomogeneous solid electrolyte interphase that resulted from the immediate interactions between the Na metal anode and organic liquid electrolyte. Herein, a customised glass fibre separator coupled with chitosan (CS@GF) was developed to modulate the sodium ion (Na<sup>+</sup>) flux. The CS@GF separator facilitates the Na<sup>+</sup> homogeneous deposition on the anode side through redistribution at the chitosan polyactive sites and by inhibiting the decomposition of the electrolyte to robust solid electrolyte interphase (SEI) formation. Multiphysics simulations show that chitosan incorporated into SMBs through the separator can make the local electric field around the anode uniform, thus facilitating the transfer of cations. Na|Na symmetric cells utilising a CS@GF separator exhibited an outstanding cycle stability of over 600 h (0.5 mA cm<sup>−2</sup>). Meanwhile, the Na|Na<sub>3</sub>V<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub> full cell exhibited excellent fast-charging performance (93.47% capacity retention after 1500 cycles at 5C). This study presents a promising strategy for inhibiting dendrite growth and realizes stable Na metal batteries, which significantly boosts the development of high-performance SMBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 516-523"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007897","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium metal batteries (SMBs) are promising candidates for next-generation energy storage devices owing to their excellent safety performance and natural abundance of sodium. However, the insurmountable obstacles of dendrite formation and quick capacity decay are caused by an unstable and inhomogeneous solid electrolyte interphase that resulted from the immediate interactions between the Na metal anode and organic liquid electrolyte. Herein, a customised glass fibre separator coupled with chitosan (CS@GF) was developed to modulate the sodium ion (Na+) flux. The CS@GF separator facilitates the Na+ homogeneous deposition on the anode side through redistribution at the chitosan polyactive sites and by inhibiting the decomposition of the electrolyte to robust solid electrolyte interphase (SEI) formation. Multiphysics simulations show that chitosan incorporated into SMBs through the separator can make the local electric field around the anode uniform, thus facilitating the transfer of cations. Na|Na symmetric cells utilising a CS@GF separator exhibited an outstanding cycle stability of over 600 h (0.5 mA cm−2). Meanwhile, the Na|Na3V5(PO4)3 full cell exhibited excellent fast-charging performance (93.47% capacity retention after 1500 cycles at 5C). This study presents a promising strategy for inhibiting dendrite growth and realizes stable Na metal batteries, which significantly boosts the development of high-performance SMBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对长循环快充钠金属电池的钠离子通量均匀化策略
钠金属电池(SMBs)因其优异的安全性能和天然丰富的钠含量而成为下一代储能设备的有希望的候选者。然而,由于Na金属阳极和有机液体电解质之间的直接相互作用造成了不稳定和不均匀的固体电解质界面,导致了枝晶形成和快速容量衰减的不可逾越的障碍。在此,开发了一种定制的玻璃纤维分离器,偶联壳聚糖(CS@GF)来调节钠离子(Na+)通量。CS@GF分离器通过壳聚糖多活性位点的重新分配和抑制电解质分解成坚固的固体电解质界面相(SEI)的形成,促进Na+在阳极侧的均匀沉积。多物理场模拟结果表明,壳聚糖通过分离器掺入到smb中,使阳极周围的局部电场均匀,有利于阳离子的转移。使用CS@GF分离器的Na|Na对称电池表现出超过600小时(0.5 mA cm−2)的出色循环稳定性。同时,na| Na3V5(PO4)3全电池表现出优异的快速充电性能,在5C下循环1500次后,电池容量保持率达到93.47%。本研究提出了一种抑制枝晶生长和实现稳定的Na金属电池的有希望的策略,这将大大促进高性能smb的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Tailoring Na-ion flux homogenization strategy towards long-cycling and fast-charging sodium metal batteries The electrochemical performance deterioration mechanism of LiNi0.83Mn0.05Co0.12O2 in aqueous slurry and a mitigation strategy In situ preparation of zincophilic covalent–organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes Opportunities and challenges in transformer neural networks for battery state estimation: Charge, health, lifetime, and safety Single-atomic iron synergistic atom-cluster induce remote enhancement toward oxygen reduction reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1