In situ preparation of zincophilic covalent–organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-11-22 DOI:10.1016/j.jechem.2024.11.019
Yunyu Zhao, Kaiyong Feng, Yingjian Yu
{"title":"In situ preparation of zincophilic covalent–organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes","authors":"Yunyu Zhao,&nbsp;Kaiyong Feng,&nbsp;Yingjian Yu","doi":"10.1016/j.jechem.2024.11.019","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc-ion batteries (ZIBs) are inexpensive and safe, but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications. In this study, 1,3,5-triformylphloroglycerol (Tp) and various diamine monomers (<em>p</em>-phenylenediamine (Pa), benzidine (BD), and 4,4′’-diamino-<em>p</em>-terphenyl (DATP)) were used to synthesize a series of two-dimensional covalent-organic frameworks (COFs). The resulting COFs were named TpPa, TpBD, and TpDATP, respectively, and they showed uniform zincophilic sites, different pore sizes, and high Young’s moduli on the Zn anode. Among them, TpPa and TpBD showed lower surface work functions and higher ion transfer numbers, which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth. Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn<sup>2+</sup> than TpDATP, providing more electron donor sites to coordinate with Zn<sup>2+</sup>. Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h, whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and 200 h. The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g. This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 524-533"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007885","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-ion batteries (ZIBs) are inexpensive and safe, but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications. In this study, 1,3,5-triformylphloroglycerol (Tp) and various diamine monomers (p-phenylenediamine (Pa), benzidine (BD), and 4,4′’-diamino-p-terphenyl (DATP)) were used to synthesize a series of two-dimensional covalent-organic frameworks (COFs). The resulting COFs were named TpPa, TpBD, and TpDATP, respectively, and they showed uniform zincophilic sites, different pore sizes, and high Young’s moduli on the Zn anode. Among them, TpPa and TpBD showed lower surface work functions and higher ion transfer numbers, which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth. Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+ than TpDATP, providing more electron donor sites to coordinate with Zn2+. Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h, whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and 200 h. The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g. This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位制备具有低表面功函数和高刚性的亲锌共价有机框架以稳定锌金属阳极
锌离子电池(zbs)价格低廉且安全,但锌阳极的副反应和锌枝晶的生长阻碍了其实际应用。本研究以1,3,5-三甲酰间苯三甘油酯(Tp)和多种二胺单体(对苯二胺(Pa)、联苯胺(BD)和4,4”-二氨基-对三苯基(DATP))为原料合成了一系列二维共价有机框架(COFs)。得到的COFs分别被命名为TpPa、TpBD和TpDATP,它们在Zn阳极上表现出均匀的亲锌位点、不同的孔径和高的杨氏模量。其中,TpPa和TpBD具有较低的表面功函数和较高的离子转移数,有利于锌的均匀镀锌/剥离,抑制枝晶生长。理论计算表明,与TpDATP相比,TpPa和TpBD对Zn2+具有更宽的负电位区和更大的吸附容量,提供了更多的电子给体位点与Zn2+配合。经TpPa和TpBD保护的对称电池可稳定循环2300 h以上,而TpDATP@Zn和裸锌对称电池在约150 h和200 h后失效。含有TpPa和TpBD修饰层的完整电池在1 A/g时也表现出良好的循环能力。该研究为通过COF修饰层构建高可逆锌阳极提供了全面的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Tailoring Na-ion flux homogenization strategy towards long-cycling and fast-charging sodium metal batteries The electrochemical performance deterioration mechanism of LiNi0.83Mn0.05Co0.12O2 in aqueous slurry and a mitigation strategy In situ preparation of zincophilic covalent–organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes Opportunities and challenges in transformer neural networks for battery state estimation: Charge, health, lifetime, and safety Single-atomic iron synergistic atom-cluster induce remote enhancement toward oxygen reduction reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1