High-valence Co deposition based on selfcatalysis of lattice Mn doping for robust acid water oxidation

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-11-06 DOI:10.1016/j.jechem.2024.10.043
Ning Yu , Fu-Li Wang , Xin-Yin Jiang , Jin-Long Tan , Mirabbos Hojamberdiev , Han Hu , Yong-Ming Chai , Bin Dong
{"title":"High-valence Co deposition based on selfcatalysis of lattice Mn doping for robust acid water oxidation","authors":"Ning Yu ,&nbsp;Fu-Li Wang ,&nbsp;Xin-Yin Jiang ,&nbsp;Jin-Long Tan ,&nbsp;Mirabbos Hojamberdiev ,&nbsp;Han Hu ,&nbsp;Yong-Ming Chai ,&nbsp;Bin Dong","doi":"10.1016/j.jechem.2024.10.043","DOIUrl":null,"url":null,"abstract":"<div><div>Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction (OER). Designing an efficient deposition channel for leaching cobalt species is a promising approach. The dissolution-deposition equilibrium of Co is achieved by doping Mn in the lattice of LaCo<sub>1−</sub><em><sub>x</sub></em>Mn<em><sub>x</sub></em>O<sub>3</sub>, prolonging the lifespan in acidic conditions by 14 times. The lattice doping of Mn produces a strain that enhances the adsorption capacity of OH<sup>−</sup>. The self-catalysis of Mn causes the leaching Co to be deposited in the form of CoO<sub>2</sub>, which ensures that the long-term stability of LaCo<sub>1−</sub><em><sub>x</sub></em>Mn<em><sub>x</sub></em>O<sub>3</sub> is 70 h instead of 5 h for LaCoO<sub>3</sub>. Mn doping enhances the deprotonation of *OOH → O<sub>2</sub> in acidic environments. Notably, the overpotential of optimized LaCo<sub>1−</sub><em><sub>x</sub></em>Mn<em><sub>x</sub></em>O<sub>3</sub> is 345 mV at 10 mA cm<sup>−2</sup> for acidic OER. This work presents a promising method for developing noble metal-free catalysts that enhance the acidic OER activity and stability.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 208-217"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007484","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction (OER). Designing an efficient deposition channel for leaching cobalt species is a promising approach. The dissolution-deposition equilibrium of Co is achieved by doping Mn in the lattice of LaCo1−xMnxO3, prolonging the lifespan in acidic conditions by 14 times. The lattice doping of Mn produces a strain that enhances the adsorption capacity of OH. The self-catalysis of Mn causes the leaching Co to be deposited in the form of CoO2, which ensures that the long-term stability of LaCo1−xMnxO3 is 70 h instead of 5 h for LaCoO3. Mn doping enhances the deprotonation of *OOH → O2 in acidic environments. Notably, the overpotential of optimized LaCo1−xMnxO3 is 345 mV at 10 mA cm−2 for acidic OER. This work presents a promising method for developing noble metal-free catalysts that enhance the acidic OER activity and stability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于晶格掺杂锰的自催化的高价钴沉积,用于强酸水氧化
非贵金属钴基氧化物在酸性氧进化反应(OER)中不可避免地会发生溶解。设计一种有效的沉积渠道来浸出钴是一种很有前景的方法。通过在 LaCo1-xMnxO3 晶格中掺杂锰,实现了钴的溶解-沉积平衡,从而将其在酸性条件下的寿命延长了 14 倍。锰的晶格掺杂产生的应变增强了对 OH- 的吸附能力。锰的自催化作用使浸出的钴以 CoO2 的形式沉积,这确保了 LaCo1-xMnxO3 的长期稳定性为 70 小时,而不是 LaCoO3 的 5 小时。在酸性环境中,锰的掺杂增强了 *OOH → O2 的去质子化作用。值得注意的是,经过优化的 LaCo1-xMnxO3 在 10 mA cm-2 的条件下,酸性 OER 的过电位为 345 mV。这项工作为开发可提高酸性 OER 活性和稳定性的无贵金属催化剂提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Tailoring Na-ion flux homogenization strategy towards long-cycling and fast-charging sodium metal batteries The electrochemical performance deterioration mechanism of LiNi0.83Mn0.05Co0.12O2 in aqueous slurry and a mitigation strategy In situ preparation of zincophilic covalent–organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes Opportunities and challenges in transformer neural networks for battery state estimation: Charge, health, lifetime, and safety Single-atomic iron synergistic atom-cluster induce remote enhancement toward oxygen reduction reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1