Mohammed T. Abdullahi , Saviour A. Umoren , Hatim D.M. Dafalla , Muhammad N. Tahir
{"title":"Synthesis, characterization and anti-corrosion property of graphitic carbon nitride for carbon steel in acid medium","authors":"Mohammed T. Abdullahi , Saviour A. Umoren , Hatim D.M. Dafalla , Muhammad N. Tahir","doi":"10.1016/j.diamond.2024.111819","DOIUrl":null,"url":null,"abstract":"<div><div>The present study involved the synthesis of a 2D material known as graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) using solvothermal method and characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Gravimetric and electrochemical methods, including electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), electrochemical frequency modulation (EFM), and potentiodynamic polarization (PDP), in combination with surface analysis techniques such as SEM, EDS, optical profilometry (OP), and atomic force microscopy (AFM) are used to confirm its anti-corrosive properties. The findings revealed that the effectiveness of g-C<sub>3</sub>N<sub>4</sub> increased proportionally with higher concentrations, reaching its peak potency of 85.0 % at a concentration of 100 ppm. Remarkably, the effectiveness of inhibition increased as the temperature rose until it reached 40 °C, but then decreased as the temperature continued to increase up to 60 °C. Density function theory and molecular dynamic simulation were used to correlate the experimental data to explain the intrinsic properties of g-C<sub>3</sub>N<sub>4</sub> and the adsorption mechanism. The primary mechanism of corrosion inhibition was found to be the adsorption of g-C<sub>3</sub>N<sub>4</sub> onto the steel surface. This was confirmed through surface analysis using SEM, EDS, AFM, OP and computational study.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111819"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092596352401032X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
The present study involved the synthesis of a 2D material known as graphitic carbon nitride (g-C3N4) using solvothermal method and characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Gravimetric and electrochemical methods, including electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), electrochemical frequency modulation (EFM), and potentiodynamic polarization (PDP), in combination with surface analysis techniques such as SEM, EDS, optical profilometry (OP), and atomic force microscopy (AFM) are used to confirm its anti-corrosive properties. The findings revealed that the effectiveness of g-C3N4 increased proportionally with higher concentrations, reaching its peak potency of 85.0 % at a concentration of 100 ppm. Remarkably, the effectiveness of inhibition increased as the temperature rose until it reached 40 °C, but then decreased as the temperature continued to increase up to 60 °C. Density function theory and molecular dynamic simulation were used to correlate the experimental data to explain the intrinsic properties of g-C3N4 and the adsorption mechanism. The primary mechanism of corrosion inhibition was found to be the adsorption of g-C3N4 onto the steel surface. This was confirmed through surface analysis using SEM, EDS, AFM, OP and computational study.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.