Metabonomic and transcriptomic profiling reveals amino acid metabolism affects the quality of premium japonica rice varieties in Northeast China

IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Food Chemistry Molecular Sciences Pub Date : 2024-11-20 DOI:10.1016/j.fochms.2024.100230
Jing Wang , Haitao Guan , Xiaolei Zhang , Changjun Dai , Cuiling Wang , Guofeng Chen , Kun Li , Zhenhua Xu , Ruiying Zhang , Baohai Liu , Hongtao Wen
{"title":"Metabonomic and transcriptomic profiling reveals amino acid metabolism affects the quality of premium japonica rice varieties in Northeast China","authors":"Jing Wang ,&nbsp;Haitao Guan ,&nbsp;Xiaolei Zhang ,&nbsp;Changjun Dai ,&nbsp;Cuiling Wang ,&nbsp;Guofeng Chen ,&nbsp;Kun Li ,&nbsp;Zhenhua Xu ,&nbsp;Ruiying Zhang ,&nbsp;Baohai Liu ,&nbsp;Hongtao Wen","doi":"10.1016/j.fochms.2024.100230","DOIUrl":null,"url":null,"abstract":"<div><div>Rice consumption and demand for premium rice are increasing worldwide. However, the characterizations and how to identify the premium rice are still unclear. Small molecular metabolites have a great advantage in distinguishing subtle differences among similar agricultural products. So, we hypothesized that the metabolites would be the key to identifying the tiny differences in premium rice among similar varieties. In this study, we performed metabolomic and transcriptomic profiles to comprehensively elucidate key metabolites, genes, and formation mechanisms of premium rice. As a result, eight compounds belong to four categories, and 49 different expressional genes were identified in premium rice varieties after comparing with the second-best varieties. Moreover, the integrated analysis confirmed that the amino acid pathway, including 42 expression genes and 11 metabolites, was critical for the premium rice formation. Six genes and two metabolites had significant regulatory effects on the pathways. Furthermore, amino acid quantification confirmed the content of 12 kinds of hydrolytic amino acids, such as aspartic acid and arginine were different between premium and other varieties. These amino acids may serve as potential biomarkers for differentiating premium rice in Northeast China. Our results strongly support the possibility of differentiating premium rice and would provide essential data for premium rice identification and metabolomics-assisted breeding.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100230"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566224000376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rice consumption and demand for premium rice are increasing worldwide. However, the characterizations and how to identify the premium rice are still unclear. Small molecular metabolites have a great advantage in distinguishing subtle differences among similar agricultural products. So, we hypothesized that the metabolites would be the key to identifying the tiny differences in premium rice among similar varieties. In this study, we performed metabolomic and transcriptomic profiles to comprehensively elucidate key metabolites, genes, and formation mechanisms of premium rice. As a result, eight compounds belong to four categories, and 49 different expressional genes were identified in premium rice varieties after comparing with the second-best varieties. Moreover, the integrated analysis confirmed that the amino acid pathway, including 42 expression genes and 11 metabolites, was critical for the premium rice formation. Six genes and two metabolites had significant regulatory effects on the pathways. Furthermore, amino acid quantification confirmed the content of 12 kinds of hydrolytic amino acids, such as aspartic acid and arginine were different between premium and other varieties. These amino acids may serve as potential biomarkers for differentiating premium rice in Northeast China. Our results strongly support the possibility of differentiating premium rice and would provide essential data for premium rice identification and metabolomics-assisted breeding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代谢组学和转录组学分析揭示氨基酸代谢对中国东北优质粳稻品种品质的影响
全世界的大米消费量和对优质大米的需求都在不断增长。然而,优质大米的特征和鉴别方法仍不明确。小分子代谢物在区分同类农产品的细微差别方面具有很大优势。因此,我们假设代谢物将是识别优质大米在同类品种中微小差异的关键。在这项研究中,我们进行了代谢组学和转录组学分析,以全面阐明优质大米的关键代谢物、基因和形成机制。结果发现,与次优品种相比,优质水稻品种中的 8 种化合物分属 4 个类别,49 个表达基因各不相同。此外,综合分析证实,氨基酸途径(包括 42 个表达基因和 11 种代谢物)对优质稻米的形成至关重要。有 6 个基因和 2 个代谢物对该途径有显著的调控作用。此外,氨基酸定量分析证实,天门冬氨酸、精氨酸等 12 种水解氨基酸的含量在优质稻和其他品种之间存在差异。这些氨基酸可作为区分中国东北优质稻米的潜在生物标志物。我们的研究结果有力地支持了区分优质水稻的可能性,并将为优质水稻鉴定和代谢组学辅助育种提供重要数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Chemistry Molecular Sciences
Food Chemistry Molecular Sciences Agricultural and Biological Sciences-Food Science
CiteScore
6.00
自引率
0.00%
发文量
83
审稿时长
82 days
期刊介绍:
期刊最新文献
Calcium chloride connects potato greening and enzymatic browning through salicylic acid Metabonomic and transcriptomic profiling reveals amino acid metabolism affects the quality of premium japonica rice varieties in Northeast China Characterization of the aroma and flavor profiles of guava fruit (Psidium guajava) during developing by HS-SPME-GC/MS and RNA sequencing Study on dynamic alterations of volatile organic compounds reveals aroma development over enzymatic-catalyzed process of Tieguanyin oolong tea production Waste to wealth: Polyhydroxyalkanoates (PHA) production from food waste for a sustainable packaging paradigm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1