{"title":"Molecular structure of enzyme-synthesized amylose-like chimeric isomaltomegalosaccharides and their encapsulation of the sulfasalazine prodrug","authors":"Weeranuch Lang , Yoshiaki Yuguchi , Chun-Yao Ke , Ting-Wei Chang , Yuya Kumagai , Wilaiwan Kaenying , Takayoshi Tagami , Feng Li , Takuya Yamamoto , Kenji Tajima , Kenji Takahashi , Takuya Isono , Toshifumi Satoh , Atsuo Kimura","doi":"10.1016/j.carbpol.2024.122956","DOIUrl":null,"url":null,"abstract":"<div><div>The glucoconjugation between linear chimeric α-(1→4)- and α-(1→6)-glucosidic segments exhibits functional properties throughout their structure. In this study, we enzymatically synthesized three new series of chimeric nonreducing isomaltomegalosaccharides (N-IMS-<em>n</em>/<em>m</em>), each featuring a constant <em>n</em>, α-(1→4)-segment (average degree of polymerization, DP = 22–25) at the nonreducing terminal, and varying <em>m</em>, α-(1→6)-main chain lengths (DP = 7–53). The synthesized compounds—N-IMS-25/7, N-IMS-24/19, and N-IMS-22/53—were compared to amylose (DP = 28) and previous samples of N-IMS-15/35 and D-IMS-28.3/13/3. D-IMS refers to a sugar with double α-(1→4)-segments at both the nonreducing and reducing ends. The binding affinity to the aromatic prodrug sulfasalazine (SZ) was assessed using a phase-solubility assay, followed by freeze-thawing. Wide-angle X-ray scattering revealed B-type crystalline patterns in bulk, and the crystallinity generally reduced with the increasing α-(1→6) segment. Interestingly, the B-type crystal structure was maintained even after SZ encapsulation, in contrast to the more common transition to V-type crystals upon drug encapsulation. Multi-angle dynamic light scattering and small-angle X-ray scattering revealed an intricate solution-state morphology, both in the absence and presence of SZ. Glucoconjugation aids in maintaining structural organization and integrity, even after the incorporation of the large SZ molecule.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"349 ","pages":"Article 122956"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724011822","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The glucoconjugation between linear chimeric α-(1→4)- and α-(1→6)-glucosidic segments exhibits functional properties throughout their structure. In this study, we enzymatically synthesized three new series of chimeric nonreducing isomaltomegalosaccharides (N-IMS-n/m), each featuring a constant n, α-(1→4)-segment (average degree of polymerization, DP = 22–25) at the nonreducing terminal, and varying m, α-(1→6)-main chain lengths (DP = 7–53). The synthesized compounds—N-IMS-25/7, N-IMS-24/19, and N-IMS-22/53—were compared to amylose (DP = 28) and previous samples of N-IMS-15/35 and D-IMS-28.3/13/3. D-IMS refers to a sugar with double α-(1→4)-segments at both the nonreducing and reducing ends. The binding affinity to the aromatic prodrug sulfasalazine (SZ) was assessed using a phase-solubility assay, followed by freeze-thawing. Wide-angle X-ray scattering revealed B-type crystalline patterns in bulk, and the crystallinity generally reduced with the increasing α-(1→6) segment. Interestingly, the B-type crystal structure was maintained even after SZ encapsulation, in contrast to the more common transition to V-type crystals upon drug encapsulation. Multi-angle dynamic light scattering and small-angle X-ray scattering revealed an intricate solution-state morphology, both in the absence and presence of SZ. Glucoconjugation aids in maintaining structural organization and integrity, even after the incorporation of the large SZ molecule.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.