Highly efficient production of lacto-N-tetraose in plasmid-free Escherichia coli through chromosomal integration of multicopy key glycosyltransferase genes.
{"title":"Highly efficient production of lacto-N-tetraose in plasmid-free Escherichia coli through chromosomal integration of multicopy key glycosyltransferase genes.","authors":"Qianyi Qian, Longhao Yang, Chunhua Zhao, Mengting Tao, Wenli Zhang, Yingying Zhu, Wanmeng Mu","doi":"10.1016/j.ijbiomac.2024.137987","DOIUrl":null,"url":null,"abstract":"<p><p>Lacto-N-tetraose (LNT) is a functional human milk oligosaccharide (HMO) commercially added to infant formula. Metabolically engineered strains for efficient production of LNT have been widely constructed. However, most of them rely on the use of plasmids, which might bring metabolic burden and the antibiotic issue. In this study, we attempted to construct a plasmid-free Escherichia coli MG1655 for LNT biosynthesis. Firstly, lacZ gene was disrupted and lacY expression was enhanced to improve the bioavailability of lactose as the initial substrate. Three copies of lgtA (encoding for β1,3-N-acetylglucosaminyltransferase) were integrated into the chromosome, enabling the highly efficient production of lacto-N-triose II (LNTri II) as the direct precursor of LNT. Efficient production of LNT was then optimized by multicopy integration of wbgO (encoding for β1,3-galactosyltransferase), disruption of the competitive pathways, and strengthening of UDP-galactose supply and oligosaccharide efflux. The final titer reached 6.99 and 42.38 g/L in shake-flask and fed-batch cultivation, respectively.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137987"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137987","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lacto-N-tetraose (LNT) is a functional human milk oligosaccharide (HMO) commercially added to infant formula. Metabolically engineered strains for efficient production of LNT have been widely constructed. However, most of them rely on the use of plasmids, which might bring metabolic burden and the antibiotic issue. In this study, we attempted to construct a plasmid-free Escherichia coli MG1655 for LNT biosynthesis. Firstly, lacZ gene was disrupted and lacY expression was enhanced to improve the bioavailability of lactose as the initial substrate. Three copies of lgtA (encoding for β1,3-N-acetylglucosaminyltransferase) were integrated into the chromosome, enabling the highly efficient production of lacto-N-triose II (LNTri II) as the direct precursor of LNT. Efficient production of LNT was then optimized by multicopy integration of wbgO (encoding for β1,3-galactosyltransferase), disruption of the competitive pathways, and strengthening of UDP-galactose supply and oligosaccharide efflux. The final titer reached 6.99 and 42.38 g/L in shake-flask and fed-batch cultivation, respectively.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.