Thi Kim Ngan Ngo, Hua-Lin Wu, Cheng-Hsiang Kuo, Ting-Yuan Tu
{"title":"Studying the role of thrombomodulin-plasminogen interaction in spatial and interfacial invasion of melanoma metastatic progression.","authors":"Thi Kim Ngan Ngo, Hua-Lin Wu, Cheng-Hsiang Kuo, Ting-Yuan Tu","doi":"10.1016/j.ijbiomac.2024.138053","DOIUrl":null,"url":null,"abstract":"<p><p>Thrombomodulin (TM), a transmembrane glycoprotein, has emerged as a key factor in the metastatic spread of various cancers, including malignant melanoma. Despite its recognized significance, the underlying mechanisms of TM's involvement in enhancing metastasis remain incompletely understood. This study addresses this knowledge gap by utilizing spatial and interfacial invasion models in vitro to investigate the effect of the interaction between TM and plasminogen (Plg) on melanoma invasion. While it is well established that Plg induces a chain reaction in the plasmin system, leading to the activation of metalloproteases that promote tumor cell invasion and metastasis, this study is the first to demonstrate that TM binding to Plg can enhance these activations in spatial and interfacial invasion models in vitro. These results highlight the potential of TM as a crucial target for the development of drugs aimed at significantly inhibiting melanoma metastasis and improving patient survival.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138053"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thrombomodulin (TM), a transmembrane glycoprotein, has emerged as a key factor in the metastatic spread of various cancers, including malignant melanoma. Despite its recognized significance, the underlying mechanisms of TM's involvement in enhancing metastasis remain incompletely understood. This study addresses this knowledge gap by utilizing spatial and interfacial invasion models in vitro to investigate the effect of the interaction between TM and plasminogen (Plg) on melanoma invasion. While it is well established that Plg induces a chain reaction in the plasmin system, leading to the activation of metalloproteases that promote tumor cell invasion and metastasis, this study is the first to demonstrate that TM binding to Plg can enhance these activations in spatial and interfacial invasion models in vitro. These results highlight the potential of TM as a crucial target for the development of drugs aimed at significantly inhibiting melanoma metastasis and improving patient survival.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.