Direct-Print 3D Electrodes for Large-Scale, High-Density, and Customizable Neural Interfaces

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-11-26 DOI:10.1002/advs.202408602
Pingyu Wang, Eric G. Wu, Hasan Uluşan, Eric Tianjiao Zhao, A.J. Phillips, Alexandra Kling, Madeline Rose Hays, Praful Krishna Vasireddy, Sasidhar Madugula, Ramandeep Vilkhu, Andreas Hierlemann, Guosong Hong, E.J. Chichilnisky, Nicholas A. Melosh
{"title":"Direct-Print 3D Electrodes for Large-Scale, High-Density, and Customizable Neural Interfaces","authors":"Pingyu Wang,&nbsp;Eric G. Wu,&nbsp;Hasan Uluşan,&nbsp;Eric Tianjiao Zhao,&nbsp;A.J. Phillips,&nbsp;Alexandra Kling,&nbsp;Madeline Rose Hays,&nbsp;Praful Krishna Vasireddy,&nbsp;Sasidhar Madugula,&nbsp;Ramandeep Vilkhu,&nbsp;Andreas Hierlemann,&nbsp;Guosong Hong,&nbsp;E.J. Chichilnisky,&nbsp;Nicholas A. Melosh","doi":"10.1002/advs.202408602","DOIUrl":null,"url":null,"abstract":"<p>Silicon-based microelectronics can scalably record and modulate neural activity at high spatiotemporal resolution, but their planar form factor poses challenges in targeting 3D neural structures. A method for fabricating tissue-penetrating 3D microelectrodes directly onto planar microelectronics using high-resolution 3D printing via 2-photon polymerization and scalable microfabrication technologies are presented. This approach enables customizable electrode shape, height, and positioning for precise targeting of neuron populations distributed in 3D. The effectiveness of this approach is demonstrated in tackling the critical challenge of interfacing with the retina—specifically, selectively targeting retinal ganglion cell (RGC) somas while avoiding the axon bundle layer. 6,600-microelectrode, 35 µm pitch, tissue-penetrating arrays are fabricated to obtain high-fidelity, high-resolution, and large-scale retinal recording that reveals little axonal interference, a capability previously undemonstrated. Confocal microscopy further confirms the precise placement of the microelectrodes. This technology can be a versatile solution for interfacing silicon microelectronics with neural structures at a large scale and cellular resolution.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 3","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202408602","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon-based microelectronics can scalably record and modulate neural activity at high spatiotemporal resolution, but their planar form factor poses challenges in targeting 3D neural structures. A method for fabricating tissue-penetrating 3D microelectrodes directly onto planar microelectronics using high-resolution 3D printing via 2-photon polymerization and scalable microfabrication technologies are presented. This approach enables customizable electrode shape, height, and positioning for precise targeting of neuron populations distributed in 3D. The effectiveness of this approach is demonstrated in tackling the critical challenge of interfacing with the retina—specifically, selectively targeting retinal ganglion cell (RGC) somas while avoiding the axon bundle layer. 6,600-microelectrode, 35 µm pitch, tissue-penetrating arrays are fabricated to obtain high-fidelity, high-resolution, and large-scale retinal recording that reveals little axonal interference, a capability previously undemonstrated. Confocal microscopy further confirms the precise placement of the microelectrodes. This technology can be a versatile solution for interfacing silicon microelectronics with neural structures at a large scale and cellular resolution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大规模、高密度和可定制神经接口的直接打印三维电极。
硅基微电子可在高时空分辨率下可扩展地记录和调控神经活动,但其平面外形给靶向三维神经结构带来了挑战。本文介绍了一种直接在平面微电子上制造组织穿透三维微电极的方法,该方法通过双光子聚合高分辨率三维打印和可扩展的微加工技术来实现。这种方法可以定制电极形状、高度和定位,从而精确定位三维分布的神经元群。这种方法在解决与视网膜连接的关键挑战方面的有效性得到了证实,特别是在避开轴突束层的同时选择性地瞄准视网膜神经节细胞(RGC)体。通过制作 6,600 个微电极、35 微米间距的组织穿透阵列,获得了高保真、高分辨率和大规模视网膜记录,几乎没有发现轴突干扰,这种能力以前从未得到过证实。共聚焦显微镜进一步证实了微电极的精确放置。这项技术可以成为硅微电子与神经结构进行大规模和细胞分辨率连接的多功能解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Pathophysiology-Directed Engineering of a Combination Nanoanalgesic for Neuropathic Pain (Adv. Sci. 8/2025) Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury (Adv. Sci. 8/2025) Manipulation of Surface Potential Distribution Enhances Osteogenesis by Promoting Pro-Angiogenic Macrophage Polarization via Activation of the PI3K-Akt Signaling Pathway (Adv. Sci. 8/2025) Attractor Landscape Analysis Reveals a Reversion Switch in the Transition of Colorectal Tumorigenesis (Adv. Sci. 8/2025) A Novel RAGE Modulator Induces Soluble RAGE to Reduce BACE1 Expression in Alzheimer's Disease (Adv. Sci. 8/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1