Guangtao Zan, Shengyou Li, Kaiying Zhao, HoYeon Kim, EunAe Shin, Kyuho Lee, Jihye Jang, Gwanho Kim, Yeonji Kim, Wei Jiang, Taebin Kim, Woojoong Kim, Cheolmin Park
{"title":"Emerging bioinspired hydrovoltaic electricity generators","authors":"Guangtao Zan, Shengyou Li, Kaiying Zhao, HoYeon Kim, EunAe Shin, Kyuho Lee, Jihye Jang, Gwanho Kim, Yeonji Kim, Wei Jiang, Taebin Kim, Woojoong Kim, Cheolmin Park","doi":"10.1039/d4ee03356f","DOIUrl":null,"url":null,"abstract":"In recent years, hydrovoltaic electricity generators (HEGs) have garnered increasing interest and attention due to their unparalleled advantages. They typically operate through direct interactions between various nanomaterials/structures and different forms of water (<em>e.g.</em>, moisture, liquid water, waves, and droplets) capable of transforming diverse energy forms into electricity, resulting in the development of four types of HEGs: moisture electricity generators (MEGs), evaporation electricity generators (EEGs), droplet electricity generators (DEGs), and reverse electrodialysis electricity generators (REGs). Consequently, a deep understanding of their interactions is crucial for the development of different types of high-performance HEGs. In this regard, the efficient utilization of water by natural organisms to achieve various complex life processes and functions provides inexhaustible and ingenious inspirations for fabricating superior HEGs, establishing this as a vibrant area of current research. In this review, we will comprehensively review the recent key advancements in the field of bioinspired HEGs. We begin by elucidating the concepts and relationships between HEGs and bioinspired design, followed by an explanation of the mechanisms behind the above four types of HEGs. Building on this foundation, we systematically summarize and discuss the current progress of HEG devices from three bioinspired perspectives: (1) elementary bioinspired materials for HEGs; (2) smart bioinspired structures for HEGs; and (3) living bioinspired devices for HEGs. In this review, we will also highlight various biological structures, functions, and processes that can inspire the design of HEGs. We conclude by summarizing the challenges in the bioinspired HEG field and providing insights into future prospects for this exciting research area.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"63 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03356f","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, hydrovoltaic electricity generators (HEGs) have garnered increasing interest and attention due to their unparalleled advantages. They typically operate through direct interactions between various nanomaterials/structures and different forms of water (e.g., moisture, liquid water, waves, and droplets) capable of transforming diverse energy forms into electricity, resulting in the development of four types of HEGs: moisture electricity generators (MEGs), evaporation electricity generators (EEGs), droplet electricity generators (DEGs), and reverse electrodialysis electricity generators (REGs). Consequently, a deep understanding of their interactions is crucial for the development of different types of high-performance HEGs. In this regard, the efficient utilization of water by natural organisms to achieve various complex life processes and functions provides inexhaustible and ingenious inspirations for fabricating superior HEGs, establishing this as a vibrant area of current research. In this review, we will comprehensively review the recent key advancements in the field of bioinspired HEGs. We begin by elucidating the concepts and relationships between HEGs and bioinspired design, followed by an explanation of the mechanisms behind the above four types of HEGs. Building on this foundation, we systematically summarize and discuss the current progress of HEG devices from three bioinspired perspectives: (1) elementary bioinspired materials for HEGs; (2) smart bioinspired structures for HEGs; and (3) living bioinspired devices for HEGs. In this review, we will also highlight various biological structures, functions, and processes that can inspire the design of HEGs. We conclude by summarizing the challenges in the bioinspired HEG field and providing insights into future prospects for this exciting research area.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).