Yang Song, Hongwu Chen, Xingdong Wang, Chenchen Weng, Kang Zou, Cheng Wang, Yanxia Yuan, Yuxuan Ma, Xue Yang, Wei Lin
{"title":"Engineering Ir-based catalysts for high current density applications in proton exchange membrane water electrolyzers","authors":"Yang Song, Hongwu Chen, Xingdong Wang, Chenchen Weng, Kang Zou, Cheng Wang, Yanxia Yuan, Yuxuan Ma, Xue Yang, Wei Lin","doi":"10.1039/d4ee03541k","DOIUrl":null,"url":null,"abstract":"The proton exchange membrane water electrolyzers (PEMWEs) are promising for the conversion and storage of renewable energy. Understanding the performance and durability of PEMWEs is crucial for engineers and researchers aiming to enhance the market adoption of this technology. Despite their potential, PEMWEs encounter challenges in large-scale and long-term deployment due to high costs and durability concerns in acidic environments. This review delves into the activation and degradation mechanisms of PEMWE components during the oxygen evolution reaction (OER), underscoring the importance of developing efficient PEMWE systems for industrial-scale hydrogen production. We explore recent advancements in engineering Ir-based catalysts for acidic OER, identifying existing gaps for practical application. A detailed overview of various modification techniques for Ir-based catalysts, such as electronic structure engineering, morphology engineering, and support engineering, is presented. Additionally, the critical influence of catalyst coating methods on membrane electrode assembly is discussed. The review also covers performance degradation in PEMWEs, detailing the degradation sources of anode catalysts, membranes, and bipolar plates. By analyzing degradation causes and mechanisms, we highlight effective strategies to enhance component longevity. Moreover, we expand our focus towards the industrialization of PEMWEs operating at high current density. Concluding with an outlook on unresolved challenges, this review offers promising directions for future research aimed at realizing practical PEMWE systems.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"140 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03541k","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The proton exchange membrane water electrolyzers (PEMWEs) are promising for the conversion and storage of renewable energy. Understanding the performance and durability of PEMWEs is crucial for engineers and researchers aiming to enhance the market adoption of this technology. Despite their potential, PEMWEs encounter challenges in large-scale and long-term deployment due to high costs and durability concerns in acidic environments. This review delves into the activation and degradation mechanisms of PEMWE components during the oxygen evolution reaction (OER), underscoring the importance of developing efficient PEMWE systems for industrial-scale hydrogen production. We explore recent advancements in engineering Ir-based catalysts for acidic OER, identifying existing gaps for practical application. A detailed overview of various modification techniques for Ir-based catalysts, such as electronic structure engineering, morphology engineering, and support engineering, is presented. Additionally, the critical influence of catalyst coating methods on membrane electrode assembly is discussed. The review also covers performance degradation in PEMWEs, detailing the degradation sources of anode catalysts, membranes, and bipolar plates. By analyzing degradation causes and mechanisms, we highlight effective strategies to enhance component longevity. Moreover, we expand our focus towards the industrialization of PEMWEs operating at high current density. Concluding with an outlook on unresolved challenges, this review offers promising directions for future research aimed at realizing practical PEMWE systems.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).