Biswajit Mahanty , Sujoy Kumar Ghosh , Dong-Weon Lee
{"title":"Boosted triboelectric performance in stretchable nanogenerators via 2D MXene-Driven electron accumulation and LiNbO₃-assisted charge transfer","authors":"Biswajit Mahanty , Sujoy Kumar Ghosh , Dong-Weon Lee","doi":"10.1016/j.compositesb.2024.111995","DOIUrl":null,"url":null,"abstract":"<div><div>The development of piezoelectrically enhanced triboelectric hybrid nanogenerators (PET-HNGs) has garnered considerable attention for their potential in energy harvesting. However, their performance in stretchable applications across diverse environments, such as air and water, remains limited due to the lack of high-performance, stretchable material compositions and a comprehensive understanding of the charge transfer mechanism involved. To address these challenges, we have designed a high-performance, stretchable nano-/micro-composite film by embedding 2D MXene nanosheets and piezoelectric LiNbO<sub>3</sub> microparticles into an Ecoflex polymer matrix. Quantum mechanical calculations revealed that MXene nanosheets significantly increase electron density near the Fermi level, while LiNbO<sub>3</sub> microparticles enhance electron transfer during contact electrification with polydimethylsiloxane (PDMS). This synergistic effect resulted in a substantial enhancement of the triboelectric energy harvesting performance, with the composite film exhibiting a 355 % increase in voltage, a 324 % increase in current, and a 100 % boost in power output density compared to systems using pure Ecoflex based TENGs. The fabricated PET-HNG demonstrated remarkable output metrics, including a voltage of 455 V, current of 140 μA, power output density of 15.6 W m<sup>−2</sup>, and an energy conversion efficiency of 78.5 %, all while maintaining exceptional performance stability even under mechanical stretching.</div><div>This stretchable nanogenerator shows great potential as a self-powered wearable sensor for real-time biomechanical monitoring in various environments, including air and underwater. This innovation paves the way for the development of next-generation wearable electronics and energy harvesting devices.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"291 ","pages":"Article 111995"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824008084","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of piezoelectrically enhanced triboelectric hybrid nanogenerators (PET-HNGs) has garnered considerable attention for their potential in energy harvesting. However, their performance in stretchable applications across diverse environments, such as air and water, remains limited due to the lack of high-performance, stretchable material compositions and a comprehensive understanding of the charge transfer mechanism involved. To address these challenges, we have designed a high-performance, stretchable nano-/micro-composite film by embedding 2D MXene nanosheets and piezoelectric LiNbO3 microparticles into an Ecoflex polymer matrix. Quantum mechanical calculations revealed that MXene nanosheets significantly increase electron density near the Fermi level, while LiNbO3 microparticles enhance electron transfer during contact electrification with polydimethylsiloxane (PDMS). This synergistic effect resulted in a substantial enhancement of the triboelectric energy harvesting performance, with the composite film exhibiting a 355 % increase in voltage, a 324 % increase in current, and a 100 % boost in power output density compared to systems using pure Ecoflex based TENGs. The fabricated PET-HNG demonstrated remarkable output metrics, including a voltage of 455 V, current of 140 μA, power output density of 15.6 W m−2, and an energy conversion efficiency of 78.5 %, all while maintaining exceptional performance stability even under mechanical stretching.
This stretchable nanogenerator shows great potential as a self-powered wearable sensor for real-time biomechanical monitoring in various environments, including air and underwater. This innovation paves the way for the development of next-generation wearable electronics and energy harvesting devices.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.