Integrating material recycling and remanufacturing in energy system optimization modeling: A review and showcase

IF 13 Q1 ENERGY & FUELS Advances in Applied Energy Pub Date : 2024-11-22 DOI:10.1016/j.adapen.2024.100198
Sebastian Zwickl-Bernhard
{"title":"Integrating material recycling and remanufacturing in energy system optimization modeling: A review and showcase","authors":"Sebastian Zwickl-Bernhard","doi":"10.1016/j.adapen.2024.100198","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the currently overlooked yet urgent topic of material recycling and remanufacturing in energy system optimization modeling, making three substantial contributions. First, it presents a comprehensive review of relevant studies on material demand, flows, and recycling from a techno-economic perspective and highlights the critical gap in existing energy system optimization models, in which material recycling and remanufacturing is not yet adequately integrated. Second, the paper introduces a general mathematical framework for incorporating material recycling and remanufacturing as a technology and investment option into typical energy system optimization models. Third, the paper demonstrates the practical application of this framework by examining the material recycling potential within the solar module expansion plan of the European Union. It explores the main drivers under which material recycling becomes economically competitive, considering various global and regional solar market conditions. Specifically, it investigates how different energy policies — such as incentivizing European Union manufacturing, limiting import shares, and implementing a circular economy constraint — affect the optimal remanufacturing capacities and achievable shares of recycling-based additions to meet the expansion targets until 2050.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"16 ","pages":"Article 100198"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792424000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the currently overlooked yet urgent topic of material recycling and remanufacturing in energy system optimization modeling, making three substantial contributions. First, it presents a comprehensive review of relevant studies on material demand, flows, and recycling from a techno-economic perspective and highlights the critical gap in existing energy system optimization models, in which material recycling and remanufacturing is not yet adequately integrated. Second, the paper introduces a general mathematical framework for incorporating material recycling and remanufacturing as a technology and investment option into typical energy system optimization models. Third, the paper demonstrates the practical application of this framework by examining the material recycling potential within the solar module expansion plan of the European Union. It explores the main drivers under which material recycling becomes economically competitive, considering various global and regional solar market conditions. Specifically, it investigates how different energy policies — such as incentivizing European Union manufacturing, limiting import shares, and implementing a circular economy constraint — affect the optimal remanufacturing capacities and achievable shares of recycling-based additions to meet the expansion targets until 2050.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将材料回收和再制造纳入能源系统优化建模:回顾与展示
本文探讨了能源系统优化建模中目前被忽视但又亟待解决的材料回收和再制造问题,并做出了三项重大贡献。首先,本文从技术经济学的角度全面回顾了材料需求、流动和回收利用方面的相关研究,并强调了现有能源系统优化模型中存在的关键差距,即材料回收和再制造尚未被充分纳入其中。其次,本文介绍了一个通用数学框架,用于将材料回收和再制造作为一种技术和投资选择纳入典型的能源系统优化模型。第三,本文通过研究欧盟太阳能模块扩张计划中的材料回收潜力,展示了这一框架的实际应用。考虑到全球和地区太阳能市场的各种情况,本文探讨了材料回收利用在经济上具有竞争力的主要驱动因素。具体而言,它研究了不同的能源政策--如激励欧盟制造业、限制进口份额和实施循环经济约束--如何影响最佳再制造能力和可实现的基于回收的新增份额,以满足 2050 年前的扩张目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
期刊最新文献
Integrating material recycling and remanufacturing in energy system optimization modeling: A review and showcase Scalable spectrally selective solar cell for highly efficient photovoltaic thermal conversion Digitalization of urban multi-energy systems – Advances in digital twin applications across life-cycle phases Multi-scale electricity consumption prediction model based on land use and interpretable machine learning: A case study of China Green light for bidirectional charging? Unveiling grid repercussions and life cycle impacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1