Photovoltaic power forecasting: A Transformer based framework

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Energy and AI Pub Date : 2024-11-19 DOI:10.1016/j.egyai.2024.100444
Gabriele Piantadosi , Sofia Dutto , Antonio Galli , Saverio De Vito , Carlo Sansone , Girolamo Di Francia
{"title":"Photovoltaic power forecasting: A Transformer based framework","authors":"Gabriele Piantadosi ,&nbsp;Sofia Dutto ,&nbsp;Antonio Galli ,&nbsp;Saverio De Vito ,&nbsp;Carlo Sansone ,&nbsp;Girolamo Di Francia","doi":"10.1016/j.egyai.2024.100444","DOIUrl":null,"url":null,"abstract":"<div><div>The accurate prediction of photovoltaic (PV) energy production is a crucial task to optimise the integration of solar energy into the power grid and maximise the benefit of renewable source trading in the energy market. This paper systematically and quantitatively analyses the literature by comparing different machine learning techniques and the impact of different meteorological forecast providers. The methodology consists of an irradiance model coupled with a meteorological provider; this combination removes the constraint of a local irradiance measurement. The result is a Transformer Neural Network architecture, trained and tested using OpenMeteo data, whose performance is superior to other combinations, providing a MAE of 1.22 kW (0.95%), and a MAPE of 2.21%. The implications of our study suggest that adopting a comprehensive approach, integrating local weather data, modelled irradiance, and PV plant configuration data, can significantly improve the accuracy of PV power forecasting, thus contributing to more effective technological and economic integration.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"18 ","pages":"Article 100444"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824001101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate prediction of photovoltaic (PV) energy production is a crucial task to optimise the integration of solar energy into the power grid and maximise the benefit of renewable source trading in the energy market. This paper systematically and quantitatively analyses the literature by comparing different machine learning techniques and the impact of different meteorological forecast providers. The methodology consists of an irradiance model coupled with a meteorological provider; this combination removes the constraint of a local irradiance measurement. The result is a Transformer Neural Network architecture, trained and tested using OpenMeteo data, whose performance is superior to other combinations, providing a MAE of 1.22 kW (0.95%), and a MAPE of 2.21%. The implications of our study suggest that adopting a comprehensive approach, integrating local weather data, modelled irradiance, and PV plant configuration data, can significantly improve the accuracy of PV power forecasting, thus contributing to more effective technological and economic integration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏发电功率预测:基于变压器的框架
准确预测光伏(PV)发电量是优化太阳能并入电网和最大化能源市场可再生能源交易利益的关键任务。本文通过比较不同的机器学习技术和不同气象预报提供商的影响,对文献进行了系统和定量分析。该方法由一个辐照度模型和一个气象预报提供商组成;这一组合消除了本地辐照度测量的限制。通过使用 OpenMeteo 数据对变压器神经网络架构进行训练和测试,该架构的性能优于其他组合,其 MAE 为 1.22 kW(0.95%),MAPE 为 2.21%。我们的研究结果表明,采用综合方法,整合当地气象数据、模拟辐照度和光伏电站配置数据,可以显著提高光伏发电功率预测的准确性,从而促进更有效的技术和经济整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
期刊最新文献
Enhancing PV feed-in power forecasting through federated learning with differential privacy using LSTM and GRU Real-world validation of safe reinforcement learning, model predictive control and decision tree-based home energy management systems Decentralized coordination of distributed energy resources through local energy markets and deep reinforcement learning Photovoltaic power forecasting: A Transformer based framework Federated learning and non-federated learning based power forecasting of photovoltaic/wind power energy systems: A systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1