Mingming Zhu, Lvzhu Yang, Sufen Kong, Yuyuan Bai, Bin Zhao
{"title":"Lacticaseibacillus rhamnosus LRa05 alleviates cyclophosphamide-induced immunosuppression and intestinal microbiota disorder in mice.","authors":"Mingming Zhu, Lvzhu Yang, Sufen Kong, Yuyuan Bai, Bin Zhao","doi":"10.1111/1750-3841.17538","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotics play a crucial role in regulating the gut microbiota and enhancing immune response. Oral administration of probiotics modulates intestinal microbiota composition and immune homeostasis. In this study, we investigated the immunoregulatory effect of Lacticaseibacillus rhamnosus LRa05 on cyclophosphamide (CTX)-induced immunosuppressive mice. The results showed that oral administration of LRa05 reduced weight loss, restored immune organ indices, and maintained the structural integrity of the intestinal tissue in CTX-treated mice. Moreover, oral administration of LRa05 exhibited immune-modulating properties by promoting the secretion of cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-10, and secretory immunoglobulin A) in serum. Moreover, the analysis of 16S rRNA amplicon sequencing revealed that LRa05 increased gut microbiota diversity and regulated its composition. In detail, LRa05 intervention restored the Firmicutes/Bacteroidota ratio and significantly increased the relative abundance of Lachnospiraceae_NK4A136_group, Oscillibacter, Alloprevotella, Parasutterella, and Roseburia in immunocompromised mice. Conversely, the abundances of Helicobacter, Bacteroides, and unclassified_Desulfovibrionaceae were significantly decreased after administration of LRa05. Based on these findings, orally administered LRa05 could effectively maintain intestinal microbiota homeostasis and regulate immunity, suggesting the potential of L. rhamnosus LRa05 as a candidate probiotic strain in the application of dietary supplement. PRACTICAL APPLICATION: Supplement with L. rhamnosus LRa05 can improve immunity, regulate gut microbiota and promote body health.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17538","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Probiotics play a crucial role in regulating the gut microbiota and enhancing immune response. Oral administration of probiotics modulates intestinal microbiota composition and immune homeostasis. In this study, we investigated the immunoregulatory effect of Lacticaseibacillus rhamnosus LRa05 on cyclophosphamide (CTX)-induced immunosuppressive mice. The results showed that oral administration of LRa05 reduced weight loss, restored immune organ indices, and maintained the structural integrity of the intestinal tissue in CTX-treated mice. Moreover, oral administration of LRa05 exhibited immune-modulating properties by promoting the secretion of cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-10, and secretory immunoglobulin A) in serum. Moreover, the analysis of 16S rRNA amplicon sequencing revealed that LRa05 increased gut microbiota diversity and regulated its composition. In detail, LRa05 intervention restored the Firmicutes/Bacteroidota ratio and significantly increased the relative abundance of Lachnospiraceae_NK4A136_group, Oscillibacter, Alloprevotella, Parasutterella, and Roseburia in immunocompromised mice. Conversely, the abundances of Helicobacter, Bacteroides, and unclassified_Desulfovibrionaceae were significantly decreased after administration of LRa05. Based on these findings, orally administered LRa05 could effectively maintain intestinal microbiota homeostasis and regulate immunity, suggesting the potential of L. rhamnosus LRa05 as a candidate probiotic strain in the application of dietary supplement. PRACTICAL APPLICATION: Supplement with L. rhamnosus LRa05 can improve immunity, regulate gut microbiota and promote body health.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.