Geoffrey Ssepuuya, Wilberforce Jjoloba, Leticia Nakamya, Juliet H. Musalima, Dorothy Nakimbugwe, George William Ssendagala
{"title":"Impact of Food-to-Food Fortification by House Cricket Powder on the Sensory, Functional, and Nutritional Properties of Climate-Smart Cassava Flour","authors":"Geoffrey Ssepuuya, Wilberforce Jjoloba, Leticia Nakamya, Juliet H. Musalima, Dorothy Nakimbugwe, George William Ssendagala","doi":"10.1007/s11483-024-09910-1","DOIUrl":null,"url":null,"abstract":"<div><p>Cassava ranks as the 2nd most important staple food in Uganda. Several climate-smart cassava varieties have been developed but remain nutrient deficient. This study evaluated the impact of adding house cricket powder on cassava’s sensory, functional, and nutritional quality behaviour. Using design expert software (version 13) and sensory analysis techniques, the study screened and selected four cassava–cricket composites based on two cassava varieties (Narocass 1 and Magana) containing between 8.36% and 10.52% house cricket powder. These composites exhibited significantly lower scores (<i>P</i> < 0.05) for colour, aroma, aftertaste, and overall acceptability, although they remained within sensory acceptable limits, i.e., 5–7 on a 9-point hedonic scale. Cricket powder incorporation significantly increased the protein content from 1.05-1.11% to 6.46–6.81% (<i>P</i> < 0.001), fat content from 0.71-0.74% to 2.30–2.77% (<i>P</i> < 0.001), and protein digestibility from 83-84% to 88–94% (<i>P</i> < 0.001). The functional properties were statistically significantly (<i>P</i> < 0.05) influenced, however, there were not any significant changes in the sensory properties (taste, texture, flavour, mouth-feel, etc.) such as taste and mouthfeel that the significant changes in functional properties would influence. The pasting properties were not generally affected. Hence, nutritionally richer cassava–cricket powder composites can substitute the food functions of plain cassava flour. The sensory quality of house cricket powder should be improved through refining techniques known to positively influence the sensory properties of cereal and tuber flours to which it is normally added as an ingredient.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09910-1","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cassava ranks as the 2nd most important staple food in Uganda. Several climate-smart cassava varieties have been developed but remain nutrient deficient. This study evaluated the impact of adding house cricket powder on cassava’s sensory, functional, and nutritional quality behaviour. Using design expert software (version 13) and sensory analysis techniques, the study screened and selected four cassava–cricket composites based on two cassava varieties (Narocass 1 and Magana) containing between 8.36% and 10.52% house cricket powder. These composites exhibited significantly lower scores (P < 0.05) for colour, aroma, aftertaste, and overall acceptability, although they remained within sensory acceptable limits, i.e., 5–7 on a 9-point hedonic scale. Cricket powder incorporation significantly increased the protein content from 1.05-1.11% to 6.46–6.81% (P < 0.001), fat content from 0.71-0.74% to 2.30–2.77% (P < 0.001), and protein digestibility from 83-84% to 88–94% (P < 0.001). The functional properties were statistically significantly (P < 0.05) influenced, however, there were not any significant changes in the sensory properties (taste, texture, flavour, mouth-feel, etc.) such as taste and mouthfeel that the significant changes in functional properties would influence. The pasting properties were not generally affected. Hence, nutritionally richer cassava–cricket powder composites can substitute the food functions of plain cassava flour. The sensory quality of house cricket powder should be improved through refining techniques known to positively influence the sensory properties of cereal and tuber flours to which it is normally added as an ingredient.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.