Saima Batool, Muhammad Idrees, Muhammad Sufiyan Javed, Junguo Xu, Munirah D. Albaqami, Awais Ahmad
{"title":"Metal-free heteroatom integrated defect engineering of flexible carbon networks on tin oxide nanoparticles to enhance lithium-ion battery performance","authors":"Saima Batool, Muhammad Idrees, Muhammad Sufiyan Javed, Junguo Xu, Munirah D. Albaqami, Awais Ahmad","doi":"10.1007/s42114-024-01048-5","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an innovative and straightforward approach to mitigate the mechanical strain of tin oxide nanoparticles via coating them with a heteroatom-integrated honeycomb-like carbon layer. This design improves the stability of the electrode–electrolyte interface. Tin oxide nanoparticles were coated with a carbon layer integrated with sulfur and nitrogen using phenolic resin and 2,5-mercapto-1,3,4-thiadiazole, followed by reduction and carbonization, resulting in the SnO₂@S,N–C nanocomposite. The heteroatom doping disrupts the carbon lattice, creating vacancies, defects, and functional groups that serve as active sites for lithium-ion adsorption and enhance ion diffusion. The porous carbon layer enables efficient electrolyte penetration and accommodates volume changes during cycling. The engineered SnO₂@S,N–C and SnO₂@C anode materials exhibited impressive lithium-ion storage capacities of 840 mAh g<sup>−1</sup> and 640 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>, respectively, with a coulombic efficiency of over 99% sustained for up to 750 cycles. Additionally, SnO₂@S,N–C retained specific capacities of 505.79 and 387.99 mAh g<sup>−1</sup> at current densities of 0.6 A g<sup>−1</sup> and 1.0 A g<sup>−1</sup>, respectively, maintaining a ≥ 99% coulombic efficiency for up to 100 cycles. Density functional theory (DFT) calculations confirmed a strong binding affinity for lithium ions on SnO<sub>2</sub>@S,N–C. This method demonstrates a promising strategy for optimizing anode materials in high-performance lithium-ion batteries.\n</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01048-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an innovative and straightforward approach to mitigate the mechanical strain of tin oxide nanoparticles via coating them with a heteroatom-integrated honeycomb-like carbon layer. This design improves the stability of the electrode–electrolyte interface. Tin oxide nanoparticles were coated with a carbon layer integrated with sulfur and nitrogen using phenolic resin and 2,5-mercapto-1,3,4-thiadiazole, followed by reduction and carbonization, resulting in the SnO₂@S,N–C nanocomposite. The heteroatom doping disrupts the carbon lattice, creating vacancies, defects, and functional groups that serve as active sites for lithium-ion adsorption and enhance ion diffusion. The porous carbon layer enables efficient electrolyte penetration and accommodates volume changes during cycling. The engineered SnO₂@S,N–C and SnO₂@C anode materials exhibited impressive lithium-ion storage capacities of 840 mAh g−1 and 640 mAh g−1 at 0.1 A g−1, respectively, with a coulombic efficiency of over 99% sustained for up to 750 cycles. Additionally, SnO₂@S,N–C retained specific capacities of 505.79 and 387.99 mAh g−1 at current densities of 0.6 A g−1 and 1.0 A g−1, respectively, maintaining a ≥ 99% coulombic efficiency for up to 100 cycles. Density functional theory (DFT) calculations confirmed a strong binding affinity for lithium ions on SnO2@S,N–C. This method demonstrates a promising strategy for optimizing anode materials in high-performance lithium-ion batteries.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.