Simplified Meteorite Parent Body Alteration of Amino Acids by Hydrothermal Processes.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2024-12-01 Epub Date: 2024-11-28 DOI:10.1089/ast.2024.0096
Christopher K Materese, José C Aponte, Hannah L McLain, Kendra K Farnsworth, Patrick D Tribbett, Frank T Ferguson, Christine A Knudson, Amy C McAdam, Michael T Thorpe, Jason P Dworkin
{"title":"Simplified Meteorite Parent Body Alteration of Amino Acids by Hydrothermal Processes.","authors":"Christopher K Materese, José C Aponte, Hannah L McLain, Kendra K Farnsworth, Patrick D Tribbett, Frank T Ferguson, Christine A Knudson, Amy C McAdam, Michael T Thorpe, Jason P Dworkin","doi":"10.1089/ast.2024.0096","DOIUrl":null,"url":null,"abstract":"<p><p>Amino acids have been identified in extraterrestrial materials such as meteorites and returned samples from asteroids and comets. Some of these amino acids or their precursors may have formed on icy interstellar dust grains or at a later phase when these grains became incorporated into larger parent bodies. In this work, we simulated parent body aqueous alteration of the residues from irradiated interstellar ice analogs in the presence of relevant minerals (pulverized serpentinite and Allende meteorite). We tracked the change in amino acid abundances as a function of hydrothermal processing time and examined how these differed based on the presence of minerals. We find that the presence of minerals and their mineralogy can have a significant impact on the formation and destruction of amino acids during simulated aqueous alteration experiments.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"1220-1230"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0096","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Amino acids have been identified in extraterrestrial materials such as meteorites and returned samples from asteroids and comets. Some of these amino acids or their precursors may have formed on icy interstellar dust grains or at a later phase when these grains became incorporated into larger parent bodies. In this work, we simulated parent body aqueous alteration of the residues from irradiated interstellar ice analogs in the presence of relevant minerals (pulverized serpentinite and Allende meteorite). We tracked the change in amino acid abundances as a function of hydrothermal processing time and examined how these differed based on the presence of minerals. We find that the presence of minerals and their mineralogy can have a significant impact on the formation and destruction of amino acids during simulated aqueous alteration experiments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热液过程对氨基酸的简化陨石母体蜕变。
在陨石以及从小行星和彗星返回的样本等地外物质中发现了氨基酸。其中一些氨基酸或其前体可能是在冰星际尘粒上形成的,或者是在这些尘粒融入较大母体的后期形成的。在这项工作中,我们模拟了在相关矿物(粉化蛇纹石和阿连德陨石)存在的情况下,母体对来自辐照星际冰类似物的残留物进行水蚀变的过程。我们跟踪了氨基酸丰度的变化与热液处理时间的函数关系,并研究了这些变化在矿物存在的情况下有何不同。我们发现,在模拟水蚀变实验过程中,矿物的存在及其矿物学可对氨基酸的形成和破坏产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
Prebiotic Nucleoside Phosphorylation in a Simulated Deep-Sea Supercritical Carbon Dioxide-Water Two-Phase Environment. Organic Products of Fatty Acid and Magnesium Sulfate Mixtures after Gamma Radiolysis: Implications for Missions to Europa. Self-Sustaining Living Habitats in Extraterrestrial Environments. Lightning-Driven Pyrite Oxidation Under Archean Atmosphere Conditions. Simplified Meteorite Parent Body Alteration of Amino Acids by Hydrothermal Processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1