Robert P Matson, Isin Y Comba, Eli Silvert, Michiel J M Niesen, Karthik Murugadoss, Dhruti Patwardhan, Rohit Suratekar, Elizabeth-Grace Goel, Brittany J Poelaert, Kanny K Wan, Kyle R Brimacombe, A J Venkatakrishnan, Venky Soundararajan
{"title":"A deep learning approach predicting the activity of COVID-19 therapeutics and vaccines against emerging variants.","authors":"Robert P Matson, Isin Y Comba, Eli Silvert, Michiel J M Niesen, Karthik Murugadoss, Dhruti Patwardhan, Rohit Suratekar, Elizabeth-Grace Goel, Brittany J Poelaert, Kanny K Wan, Kyle R Brimacombe, A J Venkatakrishnan, Venky Soundararajan","doi":"10.1038/s41540-024-00471-0","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding which viral variants evade neutralization is crucial for improving antibody-based treatments, especially with rapidly evolving viruses like SARS-CoV-2. Yet, conventional assays are labor intensive and cannot capture the full spectrum of variants. We present a deep learning approach to predict changes in neutralizing antibody activity of COVID-19 therapeutics and vaccine-elicited sera/plasma against emerging viral variants. Our approach leverages data of 67,885 unique SARS-CoV-2 Spike sequences and 7,069 in vitro assays. The resulting model accurately predicted fold changes in neutralizing activity (R<sup>2</sup> = 0.77) for a test set (N = 980) of data collected up to eight months after the training data. Next, the model was used to predict changes in activity of current therapeutic and vaccine-induced antibodies against emerging SARS-CoV-2 lineages. Consistent with other work, we found significantly reduced activity against newer XBB descendants, notably EG.5, FL.1.5.1, and XBB.1.16; primarily attributed to the F456L spike mutation.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"138"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00471-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding which viral variants evade neutralization is crucial for improving antibody-based treatments, especially with rapidly evolving viruses like SARS-CoV-2. Yet, conventional assays are labor intensive and cannot capture the full spectrum of variants. We present a deep learning approach to predict changes in neutralizing antibody activity of COVID-19 therapeutics and vaccine-elicited sera/plasma against emerging viral variants. Our approach leverages data of 67,885 unique SARS-CoV-2 Spike sequences and 7,069 in vitro assays. The resulting model accurately predicted fold changes in neutralizing activity (R2 = 0.77) for a test set (N = 980) of data collected up to eight months after the training data. Next, the model was used to predict changes in activity of current therapeutic and vaccine-induced antibodies against emerging SARS-CoV-2 lineages. Consistent with other work, we found significantly reduced activity against newer XBB descendants, notably EG.5, FL.1.5.1, and XBB.1.16; primarily attributed to the F456L spike mutation.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.