Organosilica Nanodots Doped ZnO Cathode Interface Layer for Highly Efficient and Stable Inverted Polymer Solar Cells

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-11-29 DOI:10.1021/acsami.4c14315
Luchan Huang, Zhuangzhuang Chen, Wenwen Chen, Qikun Rong, Na Li, Li Nian
{"title":"Organosilica Nanodots Doped ZnO Cathode Interface Layer for Highly Efficient and Stable Inverted Polymer Solar Cells","authors":"Luchan Huang, Zhuangzhuang Chen, Wenwen Chen, Qikun Rong, Na Li, Li Nian","doi":"10.1021/acsami.4c14315","DOIUrl":null,"url":null,"abstract":"Interfacial engineering is essential to achieve optical efficiencies and facilitate the industrialization of organic solar cells (OSCs). By doping organosilica nanodots (OSiNDs) into zinc oxide (ZnO), we have developed a hybrid ZnO/OSiNDs (4 wt %) cathode interface layer (CIL) that significantly enhances the overall performance of inverted organic solar cells (i-OSCs). In the PM6/BTP-eC9 active layer system, i-OSC devices with a ZnO/OSiNDs (4 wt %) CIL exhibit a superior power conversion efficiency (PCE) of 17.49%, surpassing that of reference devices with a pure ZnO CIL (15.88%). The OSiNDs not only modulate the work function of ZnO, thereby facilitating the carrier transport between ZnO interface and active layer, but also enhance device stability. After exposure to 1200 min of 100 mW/cm<sup>2</sup> illumination, including UV light, the devices retain 89.4% of their initial PCE, whereas devices based solely on ZnO retain only 57.7% under identical conditions. In this study, we present pioneering insights into the selection of environmentally friendly and cost-effective OSiNDs for modifying ZnO to create organic–inorganic hybrid coordination complexes as effective CILs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"258 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14315","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial engineering is essential to achieve optical efficiencies and facilitate the industrialization of organic solar cells (OSCs). By doping organosilica nanodots (OSiNDs) into zinc oxide (ZnO), we have developed a hybrid ZnO/OSiNDs (4 wt %) cathode interface layer (CIL) that significantly enhances the overall performance of inverted organic solar cells (i-OSCs). In the PM6/BTP-eC9 active layer system, i-OSC devices with a ZnO/OSiNDs (4 wt %) CIL exhibit a superior power conversion efficiency (PCE) of 17.49%, surpassing that of reference devices with a pure ZnO CIL (15.88%). The OSiNDs not only modulate the work function of ZnO, thereby facilitating the carrier transport between ZnO interface and active layer, but also enhance device stability. After exposure to 1200 min of 100 mW/cm2 illumination, including UV light, the devices retain 89.4% of their initial PCE, whereas devices based solely on ZnO retain only 57.7% under identical conditions. In this study, we present pioneering insights into the selection of environmentally friendly and cost-effective OSiNDs for modifying ZnO to create organic–inorganic hybrid coordination complexes as effective CILs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Overestimation of Operational Stability in Polymer-Based Organic Field-Effect Transistors Caused by Contact Resistance Multilevel Cu-LIG Tactile Sensing Arrays for 3D Touch Human–Machine Interaction Enhancing Hole Transport and Autonomous Healing Properties of Supramolecular Columns in Unsymmetrical Discotics Clearance of Protein-Bound Uremic Toxins Using Anion Nanotraps with Record High Uptake Tailored Ni(OH)2/CuCo/Ni(OH)2 Composite Interfaces for Efficient and Durable Urea Oxidation Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1