Synergistic Combination of Oral Transcytotic Nanomedicine and Histone Demethylase Inhibitor for Enhanced Cancer Chemoimmunotherapy

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-11-29 DOI:10.1021/acsnano.4c14816
Jing Zhang, Qiuyu Wei, Ying Piao, Shiqun Shao, Zhuxian Zhou, Jianbin Tang, Jiajia Xiang, Youqing Shen
{"title":"Synergistic Combination of Oral Transcytotic Nanomedicine and Histone Demethylase Inhibitor for Enhanced Cancer Chemoimmunotherapy","authors":"Jing Zhang, Qiuyu Wei, Ying Piao, Shiqun Shao, Zhuxian Zhou, Jianbin Tang, Jiajia Xiang, Youqing Shen","doi":"10.1021/acsnano.4c14816","DOIUrl":null,"url":null,"abstract":"Oral nanomedicines present a preferable avenue for cancer immunotherapy, but their efficacy is limited by gastrointestinal absorption challenges, tumor physiopathologic barriers, and immune evasion mechanisms. Here, we present an approach that combines an oral transcytotic doxorubicin (DOX) nanomedicine with the histone demethylase inhibitor 5-carboxy-8-hydroxyquinoline (IOX1), thereby enabling synergistic chemoimmunotherapy. We demonstrate that IOX1 significantly augments the transcytosis capabilities of DOX-loaded poly(2-(<i>N</i>-oxide-<i>N</i>,<i>N</i>-diethylamino)ethylmethacrylate)-poly(ε-caprolactone) micelles (OPDOX), promoting their transcellular transport across various cellular barriers (villus, endothelial, and tumor cells), thus improving oral adsorption, vascular extravasation, and tumor penetration. Furthermore, IOX1 sensitizes chemotherapy to potentiate DOX-induced immunogenic cell death and downregulates programmed cell death-ligand 1 to disrupt the immune checkpoint mechanism, synergistically boosting robust antitumor immune responses. Consequently, orally administered OPDOX in combination with IOX1 efficiently inhibits CT26 tumor growth, highlighting the significant potential for enhancing the efficacy of oral nanomedicines in cancer chemoimmunotherapy.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"5 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14816","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oral nanomedicines present a preferable avenue for cancer immunotherapy, but their efficacy is limited by gastrointestinal absorption challenges, tumor physiopathologic barriers, and immune evasion mechanisms. Here, we present an approach that combines an oral transcytotic doxorubicin (DOX) nanomedicine with the histone demethylase inhibitor 5-carboxy-8-hydroxyquinoline (IOX1), thereby enabling synergistic chemoimmunotherapy. We demonstrate that IOX1 significantly augments the transcytosis capabilities of DOX-loaded poly(2-(N-oxide-N,N-diethylamino)ethylmethacrylate)-poly(ε-caprolactone) micelles (OPDOX), promoting their transcellular transport across various cellular barriers (villus, endothelial, and tumor cells), thus improving oral adsorption, vascular extravasation, and tumor penetration. Furthermore, IOX1 sensitizes chemotherapy to potentiate DOX-induced immunogenic cell death and downregulates programmed cell death-ligand 1 to disrupt the immune checkpoint mechanism, synergistically boosting robust antitumor immune responses. Consequently, orally administered OPDOX in combination with IOX1 efficiently inhibits CT26 tumor growth, highlighting the significant potential for enhancing the efficacy of oral nanomedicines in cancer chemoimmunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Enhancing MoS2 Electronic Performance with Solid-State Lithium-Ion Electrolyte Contacts through Dielectric Screening Weavable, Reconfigurable Triboelectric Ferrofluid Fiber for Early Warning Synergistic Combination of Oral Transcytotic Nanomedicine and Histone Demethylase Inhibitor for Enhanced Cancer Chemoimmunotherapy Strategic Design for High-Efficiency Oxygen Evolution Reaction (OER) Catalysts by Triggering Lattice Oxygen Oxidation in Cobalt Spinel Oxides High-Entropy Rock-Salt Surface Layer Stabilizes the Ultrahigh-Ni Single-Crystal Cathode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1