Stabilizing Li-Metal Electrode via Anion-Induced Desolvation in a Covalent Organic Framework Separator

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-02-27 DOI:10.1021/acsnano.5c00165
Jia Chen, Zhuozhuo Tang, Da Zhu, Li Sheng, Kai Yang, Zhiguo Zhang, Jianlong Wang, Yaping Tang, Xiangming He, Hong Xu
{"title":"Stabilizing Li-Metal Electrode via Anion-Induced Desolvation in a Covalent Organic Framework Separator","authors":"Jia Chen, Zhuozhuo Tang, Da Zhu, Li Sheng, Kai Yang, Zhiguo Zhang, Jianlong Wang, Yaping Tang, Xiangming He, Hong Xu","doi":"10.1021/acsnano.5c00165","DOIUrl":null,"url":null,"abstract":"Although Li-metal batteries have been widely used as high-capacity batteries, they are highly susceptible to electrolytes that lead to dendritic or dead Li growth, which significantly reduces the stability of Li-metal electrodes. Herein, we report an anionic covalent organic framework (sulfonate COF: Bd-COF) as a Li<sup>+</sup>-solvate dissociator that strips solvent molecules from encapsulated Li<sup>+</sup> to stabilize Li-metal electrodes. The homogeneous and dense ionic COF separator was prepared using a template-assisted interface in-suit polymerization engineering. Notably, the well-developed anionic groups within the COF channels could as counter-charge ligands to Li<sup>+</sup>, that adsorb Li<sup>+</sup>-solvates and induce their partial desolvation. Meanwhile, the ordered anionic groups on the surface of COF pores provide continuous ion channels for Li<sup>+</sup> migration, facilitating the removal of solvent molecules from Li<sup>+</sup>-solvated species. Combined with the dense nanoporous feature, the COF membrane was found to be effective in suppressing Li-dendrites and parasitic reactions. The Bd-COF/Celgard membrane realizes uniform Li deposition on Li-metal electrodes, exhibiting excellent cycling performance in Li-symmetric batteries and high-voltage Li-metal batteries with LiNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> cathodes, showcasing the application prospects of ion-conductive covalent organic frameworks in lithium battery separators.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"28 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00165","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although Li-metal batteries have been widely used as high-capacity batteries, they are highly susceptible to electrolytes that lead to dendritic or dead Li growth, which significantly reduces the stability of Li-metal electrodes. Herein, we report an anionic covalent organic framework (sulfonate COF: Bd-COF) as a Li+-solvate dissociator that strips solvent molecules from encapsulated Li+ to stabilize Li-metal electrodes. The homogeneous and dense ionic COF separator was prepared using a template-assisted interface in-suit polymerization engineering. Notably, the well-developed anionic groups within the COF channels could as counter-charge ligands to Li+, that adsorb Li+-solvates and induce their partial desolvation. Meanwhile, the ordered anionic groups on the surface of COF pores provide continuous ion channels for Li+ migration, facilitating the removal of solvent molecules from Li+-solvated species. Combined with the dense nanoporous feature, the COF membrane was found to be effective in suppressing Li-dendrites and parasitic reactions. The Bd-COF/Celgard membrane realizes uniform Li deposition on Li-metal electrodes, exhibiting excellent cycling performance in Li-symmetric batteries and high-voltage Li-metal batteries with LiNi0.6Mn0.2Co0.2O2 cathodes, showcasing the application prospects of ion-conductive covalent organic frameworks in lithium battery separators.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Stabilizing Li-Metal Electrode via Anion-Induced Desolvation in a Covalent Organic Framework Separator Hydrogel-Coated Polydimethylsiloxane with Reversible Transparency for Advanced Optical Switching Ozonated Monolayer Graphene for Extended Performance and Durability in Hydrogen Fuel Cell Electric Vehicles Monolayer WSe2 Field-Effect Transistor Performance Enhancement by Atomic Defect Engineering and Passivation All-Fiber Volatile Organics-Perceptive Actuators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1