Orbital pacing of the early Eocene source rock deposition in Tunisia (Bou Dabbous Formation): Astrobiochronological insights into cyclicities through surface-subsurface integration

IF 3.7 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Marine and Petroleum Geology Pub Date : 2024-11-28 DOI:10.1016/j.marpetgeo.2024.107225
Jihede Haj Messaoud , Hela Fakhfakh Ben Jemai , Chokri Yaich
{"title":"Orbital pacing of the early Eocene source rock deposition in Tunisia (Bou Dabbous Formation): Astrobiochronological insights into cyclicities through surface-subsurface integration","authors":"Jihede Haj Messaoud ,&nbsp;Hela Fakhfakh Ben Jemai ,&nbsp;Chokri Yaich","doi":"10.1016/j.marpetgeo.2024.107225","DOIUrl":null,"url":null,"abstract":"<div><div>The Early Eocene Bou Dabbous Formation (BDF) source rock is an economically important source rock in the SW Neo-Tethys covering most of the Ypresian outer ramp to basin deposits in Tunisia. The main rock types of the BDF in central Tunisia include globigerinids-rich grey to black laminated marl and limestone, which occur with an obvious cyclicity at astronomical timescales. This study examines two high-resolution borehole records from northern and eastern Tunisia and an outcrop analog in central Tunisia. The datasets examined were total organic carbon (TOC), magnetic susceptibility, CaCO<sub>3</sub>, δ<sup>13</sup>C, δ<sup>18</sup>O, and Gamma-Ray (GR). We aim to investigate the relationship between the rhythmic patterns observed at the BDF outcrop and the Milankovitch cycles and contextualize the findings within the Ypresian Astrochronological Time Scale (YATS). Additionally, we will discuss the impact of astronomical forcing on sea-level variations and the upwelling system during a greenhouse world. Field measurements and power spectra of the untuned data reveal a hierarchy of cycles throughout the BDF with ∼11.1 m, 4.1, 2.4 m, 1.1 m, and 0.6 m wavelengths. Tuning the 11.1 m cycles to the 405 kyr eccentricity cycle, the astronomical parameters—eccentricity, obliquity, and the precession index—become apparent. The 405 kyr eccentricity cycle is linked to relative sea-level changes inferred from sequence stratigraphy analysis and sedimentary noise modeling. Periods with increased TOC are associated with strong obliquity forcing inferred from the power decomposition analysis and the strong 173-kyr obliquity modulation cycles. The Ypresian record from Tunisia demonstrates the orbital pacing on the strength of the upwelling system, by affecting both the sea level and the climatic belt (wind regime). From 53.89 Ma to 53.2 Ma (TOC &gt;2 wt %), our model demonstrates that obliquity-driven changes in water stratification led to episodes of varying oxygen levels at the bottom of the basin, affecting organic matter decay and preservation. During the Early Eocene Climatic Optimum, changes in climatic belts and wind patterns, along with rising sea levels, led to a shift in the high organic matter accumulation zone. This resulted in a weakened upwelling system in central Tunisia and reduced organic matter accumulation (TOC &lt;0.5 wt%).</div></div>","PeriodicalId":18189,"journal":{"name":"Marine and Petroleum Geology","volume":"172 ","pages":"Article 107225"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine and Petroleum Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264817224005373","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Early Eocene Bou Dabbous Formation (BDF) source rock is an economically important source rock in the SW Neo-Tethys covering most of the Ypresian outer ramp to basin deposits in Tunisia. The main rock types of the BDF in central Tunisia include globigerinids-rich grey to black laminated marl and limestone, which occur with an obvious cyclicity at astronomical timescales. This study examines two high-resolution borehole records from northern and eastern Tunisia and an outcrop analog in central Tunisia. The datasets examined were total organic carbon (TOC), magnetic susceptibility, CaCO3, δ13C, δ18O, and Gamma-Ray (GR). We aim to investigate the relationship between the rhythmic patterns observed at the BDF outcrop and the Milankovitch cycles and contextualize the findings within the Ypresian Astrochronological Time Scale (YATS). Additionally, we will discuss the impact of astronomical forcing on sea-level variations and the upwelling system during a greenhouse world. Field measurements and power spectra of the untuned data reveal a hierarchy of cycles throughout the BDF with ∼11.1 m, 4.1, 2.4 m, 1.1 m, and 0.6 m wavelengths. Tuning the 11.1 m cycles to the 405 kyr eccentricity cycle, the astronomical parameters—eccentricity, obliquity, and the precession index—become apparent. The 405 kyr eccentricity cycle is linked to relative sea-level changes inferred from sequence stratigraphy analysis and sedimentary noise modeling. Periods with increased TOC are associated with strong obliquity forcing inferred from the power decomposition analysis and the strong 173-kyr obliquity modulation cycles. The Ypresian record from Tunisia demonstrates the orbital pacing on the strength of the upwelling system, by affecting both the sea level and the climatic belt (wind regime). From 53.89 Ma to 53.2 Ma (TOC >2 wt %), our model demonstrates that obliquity-driven changes in water stratification led to episodes of varying oxygen levels at the bottom of the basin, affecting organic matter decay and preservation. During the Early Eocene Climatic Optimum, changes in climatic belts and wind patterns, along with rising sea levels, led to a shift in the high organic matter accumulation zone. This resulted in a weakened upwelling system in central Tunisia and reduced organic matter accumulation (TOC <0.5 wt%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine and Petroleum Geology
Marine and Petroleum Geology 地学-地球科学综合
CiteScore
8.80
自引率
14.30%
发文量
475
审稿时长
63 days
期刊介绍: Marine and Petroleum Geology is the pre-eminent international forum for the exchange of multidisciplinary concepts, interpretations and techniques for all concerned with marine and petroleum geology in industry, government and academia. Rapid bimonthly publication allows early communications of papers or short communications to the geoscience community. Marine and Petroleum Geology is essential reading for geologists, geophysicists and explorationists in industry, government and academia working in the following areas: marine geology; basin analysis and evaluation; organic geochemistry; reserve/resource estimation; seismic stratigraphy; thermal models of basic evolution; sedimentary geology; continental margins; geophysical interpretation; structural geology/tectonics; formation evaluation techniques; well logging.
期刊最新文献
Orbital pacing of the early Eocene source rock deposition in Tunisia (Bou Dabbous Formation): Astrobiochronological insights into cyclicities through surface-subsurface integration Diverse dolomitization models in the Aptian Dariyan (Shu'aiba) Formation in the Persian Gulf, Iran: Evidence from petrography, geochemistry and impact on reservoir quality Linking provenance and diagenesis to reservoir quality evolution of sandstones: The Paleocene-Eocene Kerri-Kerri Formation, northeastern Nigeria Tectonically deformed coal: Focus on microstructures & implications for basin evolution Compartmentalization of submarine channel splays controlled by growth faults and mud diapir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1