miRNA signatures affecting the survival outcome in distant metastasis of triple-negative breast cancer.

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Biochemical pharmacology Pub Date : 2025-01-01 Epub Date: 2024-11-27 DOI:10.1016/j.bcp.2024.116683
Acharya Balkrishna, Rashmi Mittal, Ankur Bishayee, Alan Prem Kumar, Anupam Bishayee
{"title":"miRNA signatures affecting the survival outcome in distant metastasis of triple-negative breast cancer.","authors":"Acharya Balkrishna, Rashmi Mittal, Ankur Bishayee, Alan Prem Kumar, Anupam Bishayee","doi":"10.1016/j.bcp.2024.116683","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) constitutes for 10-15% of all breast cancer cases. Tumor heterogeneity, high invasiveness, distant metastasis, lack of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 expression contribute to TNBC associated with poor overall survival outcomes amongst diseased individuals. The disparity in clinico-pathological and metastatic patterns to distant sites has substantially enhanced the incidences of tumor recurrence. Survival outcomes amongst metastatic TNBC patients are worse in comparison to non-metastatic TNBC counterparts. MicroRNAs (miRNAs) have emerged as significant drivers to function either as oncogene or tumor suppressors by exerting modulating effects on the expression of target genes in the TNBC tumor microenvironment. The pleiotropic nature of miRNAs expands their preclinical and clinical utility in combating both metastatic and non-metastatic TNBC cases and thereby improves their survival outcomes. The present review article aims to highlight the varying survival outcomes in metastatic and non-metastatic TNBC cases. The present review article emphasizes the therapeutic and prognostic potential of miRNAs in TNBC to improve survival outcomes by retarding distant metastasis to lung, bone, brain, and lymph nodes.</p>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":" ","pages":"116683"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bcp.2024.116683","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC) constitutes for 10-15% of all breast cancer cases. Tumor heterogeneity, high invasiveness, distant metastasis, lack of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 expression contribute to TNBC associated with poor overall survival outcomes amongst diseased individuals. The disparity in clinico-pathological and metastatic patterns to distant sites has substantially enhanced the incidences of tumor recurrence. Survival outcomes amongst metastatic TNBC patients are worse in comparison to non-metastatic TNBC counterparts. MicroRNAs (miRNAs) have emerged as significant drivers to function either as oncogene or tumor suppressors by exerting modulating effects on the expression of target genes in the TNBC tumor microenvironment. The pleiotropic nature of miRNAs expands their preclinical and clinical utility in combating both metastatic and non-metastatic TNBC cases and thereby improves their survival outcomes. The present review article aims to highlight the varying survival outcomes in metastatic and non-metastatic TNBC cases. The present review article emphasizes the therapeutic and prognostic potential of miRNAs in TNBC to improve survival outcomes by retarding distant metastasis to lung, bone, brain, and lymph nodes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
影响三阴性乳腺癌远处转移的miRNA特征
三阴性乳腺癌(TNBC)占所有乳腺癌病例的10-15%。肿瘤异质性、高侵袭性、远处转移、缺乏雌激素受体、孕激素受体和人表皮生长因子受体2表达是导致TNBC与患病个体总体生存结果差相关的因素。临床病理和远处转移模式的差异大大增加了肿瘤复发率。与非转移性TNBC患者相比,转移性TNBC患者的生存结果更差。通过调节TNBC肿瘤微环境中靶基因的表达,MicroRNAs (miRNAs)已成为发挥癌基因或肿瘤抑制作用的重要驱动因素。mirna的多效性扩大了其在治疗转移性和非转移性TNBC病例中的临床前和临床应用,从而提高了患者的生存结果。本综述旨在强调转移性和非转移性TNBC病例的不同生存结果。这篇综述文章强调了mirna在TNBC中的治疗和预后潜力,通过延缓肺、骨、脑和淋巴结的远处转移来改善生存结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical pharmacology
Biochemical pharmacology 医学-药学
CiteScore
10.30
自引率
1.70%
发文量
420
审稿时长
17 days
期刊介绍: Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics. The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process. All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review. While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.
期刊最新文献
Acute myeloid leukemia with t(8;21) translocation: Molecular pathogenesis, potential therapeutics and future directions. The novel use of the CFTR corrector C17 in muscular dystrophy: Pharmacological profile and in vivo efficacy. An Introduction to the Special Issue "9th International Conference on Relaxin and Related Peptides". The natural product micheliolide promotes the nuclear translocation of GAPDH via binding to Cys247 and induces glioblastoma cell death in combination with temozolomide. The AHR-NRF2-JDP2 gene battery: Ligand-induced AHR transcriptional activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1