Fatemeh Haddadan, Mohammad Soroosh, Ramakrishnan Rajasekar
{"title":"Design and simulation of the charge layer effect on the Schottky junction characteristics using an ensemble Monte Carlo model","authors":"Fatemeh Haddadan, Mohammad Soroosh, Ramakrishnan Rajasekar","doi":"10.1007/s10825-024-02249-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, an efficient two-valley Monte Carlo model simulates the Schottky junction. Impurity and phonon scatterings are considered, and impact ionization is included in the scattering matrix. Non-parabolic energy bands are assumed, and tunneling and thermionic emission are the current components. By adding a thin layer, it is shown that the formation of an electric field opposite to the electron motion direction at the junction boundary increases the effective height of the Schottky barrier. By changing the impurity concentration density of this thin layer, the change in the effective height of the Schottky barrier and consequently the simulated passing current is studied. A comparison of the results obtained from the simulation with valid scientific data confirms the correctness of the presented model. The proposed model can be widely used in the analysis of Schottky-based devices.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02249-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, an efficient two-valley Monte Carlo model simulates the Schottky junction. Impurity and phonon scatterings are considered, and impact ionization is included in the scattering matrix. Non-parabolic energy bands are assumed, and tunneling and thermionic emission are the current components. By adding a thin layer, it is shown that the formation of an electric field opposite to the electron motion direction at the junction boundary increases the effective height of the Schottky barrier. By changing the impurity concentration density of this thin layer, the change in the effective height of the Schottky barrier and consequently the simulated passing current is studied. A comparison of the results obtained from the simulation with valid scientific data confirms the correctness of the presented model. The proposed model can be widely used in the analysis of Schottky-based devices.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.